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Abstract—Improved lower and upper bounds on the size and
the rate of grain-correcting codes are presented. The lower
bound is Gilbert–Varshamov-like combined with a construction
by Gabrys et al.; it improves on the previously best known lower
bounds on the asymptotic rate of ⌈τn⌉-grain-correcting codes
of length n on the interval [0, 0.0668]. One of the two newly
presented upper bounds improves on the best known upper
bounds on the asymptotic rate of ⌈τn⌉-grain-correcting codes
of length n on the interval τ ∈ (0, 1

8
] and meets the lower bound

of 1

2
for τ ≥ 1

8
. Moreover, in a nonasymptotic regime, both

upper bounds improve on the previously best known results on
the largest size of t-grain-correcting codes of length n, for certain
values of n and t. Constructions of 1-grain-correcting codes based
on a partitioning technique are presented for lengths up to 18.
Finally, a lower bound of 1

2
log

2
n on the minimum redundancy

of ∞-grain-detecting codes of length n is presented.

Index Terms—asymmetric error-correcting codes, convex op-
timization, Gilbert–Varshamov bound, grain-correcting codes,
grain-detecting codes, granular media, linear programming,
lower bounds, magnetic recording, Markov chain, upper bounds.

I. INTRODUCTION

In a paper by Wood et al. [31], a certain improvement to

the write and readback mechanisms of magnetic recording

media was proposed, allowing for a higher storage density

due to the ability of magnetizing areas commensurate with

the dimensions of basic units forming the media called grains.

Due to the higher writing density, one physical grain can be

shared among several adjacent logical cells into which the

media were partitioned, thereby introducing a new type of

nonoverlapping smearing error to the information stored on

these media. After the publication of [31], the granular media

have been studied in several papers [11], [13], [14], [22], [27].

Mazumdar et al. [22] described a one-dimensional model of

the errors occurring in these media restricting the grains to

be only of lengths 1 and 2, and gave the first constructions

and bounds on the size of codes that correct these so-called

grain errors. In our earlier work [27], with a different yet

conceptually similar application to shingled writing on bit-

patterned media [12] in mind, we generalized the notion
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of grain errors to account for overlapping error patterns as

well. Information-theoretic properties of the write channels

representing the one-dimensional versions of both applications

were studied by Iyengar et al. [13]. Kashyap and Zémor [14],

as well as Fazeli et al. [8], [9], using a reduction to the

problem of bounding the size of packings in hypergraphs

(see [18]), presented the best known upper bounds on the size

and rate of codes correcting grain errors for the nonoverlapping

case, whereas Gabrys et al. [11] used that reduction to derive

the best known upper bounds on the size of codes for the

overlapping case. The best known lower bounds on the size

and rate of those codes are due to our earlier work [27],

where we present a general technique for improving Gilbert–

Varshamov lower bounds (see the results of Kolesnik and

Krachkovsky [17]). Several constructions of codes correcting

a small number of grain errors were presented in [11].

Next, we formally present the model of grain errors. Let

〈s〉 denote the set {0, 1, . . . , s−1}, for any positive integer s,

and let Σ2 = 〈2〉. A smearing error inflicted by a grain (of

length 2), ending at location e, to a word x = (xi)i∈〈n〉 of

length n over Σ2 results in an output word y = (yi)i∈〈n〉,

wherein the value of ye equals that of xe−1 instead of xe.

Given n consecutive positions on the medium (where words

of length n over Σ2 are to be written), define a grain pattern

as a set S ⊆ 〈n〉 \ {0} containing all the grain locations in

these n positions. We will commonly refer to the elements of

S (which indicate grain locations) simply as grains. Thus, a

grain pattern S inflicts errors to a word x = (xi)i∈〈n〉 over Σ2

by means of the smearing operator σS that yields an output

word y = (yi)i∈〈n〉 = σS(x) over Σ2 in the following way:

for any index e ∈ 〈n〉 \ {0},

ye =

{
xe−1 if e ∈ S
xe otherwise

.

If overlaps are disallowed in a grain pattern S, for any two

distinct grains e, e′ ∈ S, we require in addition that |e′−e| > 1.

Example 1.1: Let n = 7, x = 1010110, S = {1, 3, 5},

and S ′ = {1, 2}. Then σS(x) = 1111110 and σS′(x) =
1100110. The grain pattern S is nonoverlapping, whereas S ′

has overlaps.

For a positive integer t and x,x′ ∈ Σn
2 , the words x and x′

are said to be as t-confusable if there exist grain patterns S,S ′

of size at most t for which σS(x) = σS′(x′) (depending on

the context, we may disallow overlaps in S and S ′). Words x

and x′ are confusable if they are t-confusable for some finite

t; otherwise, they are said to be non-confusable. A binary

code C of length n (namely, a nonempty subset of Σn
2 ) is



called t-grain-correcting if no two distinct codewords in C
are t-confusable. A code C will be called ∞-grain-correcting

if any pair of distinct codewords in C are non-confusable. A

code C will be called ∞-grain-detecting if for any codeword

x ∈ C and any nonempty grain pattern S, one has σS(x) /∈ C.

Let M(n, t) denote the largest size of any t-grain-correcting

code of length n over Σ2 with overlaps disallowed. For τ ∈
[0, 1], define the (asymptotic) rate of ⌈τn⌉-grain-correcting

codes over Σ2 (with overlaps disallowed) as

R(τ)
△

= lim
n→∞

1

n
log2 M(n, ⌈τn⌉).

The rest of this paper is organized as follows. In Sections II

and III, we present improved lower and upper bounds, re-

spectively, on the size M(n, t) and the rate R(τ) of ⌈τn⌉-

grain-correcting codes over Σ2 (with overlaps disallowed). In

Section IV, we show a construction of 1-grain-correcting codes

of lengths up to 18 over Σ2 using a well-known partitioning

technique [1], [2, Sec. 6], [24]. Finally, Section V presents an

upper bound on the size of ∞-grain-detecting codes of length

n over Σ2.

II. LOWER BOUND ON R(τ)

In this section, we will develop Gilbert–Varshamov-like

lower bounds on the size and the rate of grain-correcting codes.

In the basis of our technique lies a variation of a construction

by Gabrys et al. [11, Constr. 3] combined with our method

from [27]; the latter technique, in turn, is based on the results

of Kolesnik and Krachkovsky [17]. We start off by citing a

modified version of [11, Constr. 3] next.

For simplicity of the presentation, we switch, as in our

earlier work [27], to a different notion of confusability which

we refer to as wide-sense confusability. Given a positive

integer t, two words x and x′ are t-confusable in the wide

sense (t-cws, in short) if there exist grain patterns S and S ′

(with overlaps allowed) such that

|S|+ |S ′| ≤ 2t and σS(x) = σS′(x′).

Since any t-confusable pair of words is also t-cws, it follows

that any t-grain-correcting code in the wide sense is also t-
grain-correcting in the ordinary sense (with overlaps allowed).

Our lower bounds will, in fact, apply to t-grain-correcting

codes in the wide sense and will imply the existence of t-
grain-correcting codes in the ordinary sense of at least the

same size. Note that for a pair of confusable words x, x′

over Σ2, the minimal sum |S|+ |S ′| of sizes of grain patterns

S and S ′ that confuse these two words equals the Hamming

distance d(x,x′) between the words. This observation gives

rise to an equivalent definition for wide-sense confusability,

namely, two words x,x′ ∈ Σn
2 are t-cws if they are confusable

and d(x,x′) ≤ 2t.

Let Σ3 = {00 , 01 , 10} be a ternary alphabet1 and let E⋆ :
Σ2

2 → Σ3 be a mapping which is defined for every binary pair

1We will use italics to denote the three (two-bit) symbols of Σ3 to
distinguish them better from the elements of Σ2.

aa′ ∈ Σ2
2 as follows:

E⋆(aa′) =





00 aa′ ∈ {00, 11}
01 aa′ = 01

10 aa′ = 10

.

Let n be a positive even integer denoting the length of our

prospective code. We extend E⋆ to a mapping E : Σn
2 → Σ

n/2
3

which maps binary words y = (yiyi+1)i∈〈n/2〉 of length n to

ternary words of length n/2 as follows:

E(y) = (E⋆(yiyi+1))i∈〈n/2〉.

A cloud E−1(x) ⊆ Σn
2 of a word x ∈ Σ

n/2
3 is defined as the

subset of all words in Σn
2 whose image under E is x, namely,

E−1(x) = {y ∈ Σn
2 : E(y) = x} .

Given words x,x′ ∈ Σ
n/2
3 , we will say that the clouds

E−1(x) and E−1(x′) are t-cws if there exist binary words

y ∈ E−1(x) and y′ ∈ E−1(x′) of length n which are t-cws.

Notice that any cloud is an ∞-grain-correcting code of length

n (see [27, Lemma 4.1]), hence one way of constructing a

t-grain-correcting code of length n is by joining clouds which

are pairwise non-t-cws. The same basic idea underpins [11,

Constr. 3]; our approach will differ by a more fine-grained

analysis of the lower bound on the size of the obtained binary

code of length n, by the virtue of [17].

Let m ≤ n/2 be a nonnegative integer. Let Cm(n) be a

ternary code of length n/2 over Σ3 such that the number of

times that the symbol 00 ∈ Σ3 appears in each codeword

c = (ci)i∈〈n/2〉 ∈ Cm(n) is at least m. Define a binary code

C of length n as the following set

C =
⋃

c∈Cm(n)

E−1(c). (1)

The following lemma follows immediately; it summarizes

how non-confusability of clouds in the code Cm(n) can be

converted into grain-correcting capability of the code C.

Lemma 2.1: Let t ≤ n−1 be a positive integer and

let Cm(n) have the following property: for any two distinct

codewords c, c′ ∈ Cm(n), the clouds E−1(c) and E−1(c′) are

not t-cws. Then the binary code C of length n defined in (1)

is a t-grain-correcting code (in the wide sense) of size at least

2m |Cm(n)|.
Let t be a positive integer. For a subset J ⊆ Σ

n/2
3 and a

word x ∈ J , let Rt(x;J ) be the set of all the words in J
whose clouds are t-cws with E−1(x). Let

Wt(J ) =
∑

x∈J

|Rt(x;J )|

be the number of ordered pairs of t-cws clouds of words in

J . In other words,

Wt(J ) =
∣∣∣
{
(x,x′) ∈ J×J : ∃(y,y′) ∈ E−1(x)× E−1(x′),

such that y and y′ are t-cws
}∣∣∣.

Reformulating [17, Lemma 3] for grain-correcting codes, we

are able to establish the following lower bound on M(n, t).
Lemma 2.2: Let n, t be positive integers, t ≤ n−1, and

let m be a nonnegative integer, m ≤ n/2. Let J = Jm(n) ⊆



Σ
n/2
3 be a set of ternary words such that the number of times

that the symbol 00 appears in each word of J is at least m.

Then

M(n, t) ≥ 2m |J |2
4Wt(J )

. (2)

Proof: Combine [27, Lemma 2.5] and Lemma 2.1.

Assuming we are able to compute the size of a selected

subset J , to obtain a lower bound on the rate of grain-

correcting codes it remains to estimate the asymptotic growth

rate of Wt(J ), to which we will devote the rest of this

section. The subsets J that we examine are certain sets

of ternary words with prescribed empirical distribution of

transitions from one symbol to another (such that the number

of occurrences of 00 in each word is approximately m), and

our method of assessing the asymptotic growth rate of Wt(J )
relies on counting a certain type of cycle in a specifically

designed finite directed graph.

For a word x = (xi)i∈〈n/2〉 ∈ Σ
n/2
3 and symbols a, a′ ∈

Σ3, let

κ(x; a, a′) = {i ∈ 〈n/2−1〉 : (xi, xi+1) = (a, a′)}
count the number of transitions from the symbol a to the

symbol a′ in x. Let p0, p1 be positive real numbers that satisfy

p0+p1 < 1. For ǫ > 0 and n ≥ 16
5ǫ , let Jp0,p1,ǫ(n) be the set

of all the words x in Σ
n/2
3 such that for any a, a′ ∈ Σ3,

∣∣∣∣
κ(x; a, a′)

1
2n−1

− µa,a′

∣∣∣∣ ≤
ǫ

8
, (3)

where

µ00 ,00 = p0, (4)

µa,a′ =
p1
4

for any a, a′ ∈ {01 , 10} and (5)

µ00 ,a = µa,00 =
1−p0−p1

4
for any a ∈ {01 , 10} . (6)

Let z ∈ (0, 1] and h,m ∈ (0,∞) be indeterminates and define

the following matrix, whose rows and columns are indexed by

〈4〉:

AG(z, h,m)=




h2 4hz 2 2z2

h (2 + 2hm)z 2m 2mz2

1 4mz 2m2 2m2z2

1 4mz 2m2 m2z2


. (7)

The following lemma states an upper bound on the asymptotic

growth rate of Wt(J ) for t = ⌈2τ(n/2−1)⌉ and J =
Jp0,p1,ǫ(n) where τ ∈ (0, 1) is a prescribed number of errors

per symbol. The proof is similar to [27] and is included in

Appendix A for completeness.

Lemma 2.3: Let τ ∈ (0, 1), and let p0, p1 be positive real

numbers that satisfy p0+p1 < 1. Then

lim
ǫ→0

lim
n→∞

2

n
log2 W⌈2τ(n/2−1)⌉(Jp0,p1,ǫ(n)) ≤ K(τ, p0, p1),

(8)

where

K(τ, p0, p1) = inf
z∈(0,1], h,m∈(0,∞)

{
log2 λ(AG(z, h,m)) (9)

− 4τ log2 z − 2p0 log2 h− 2p1 log2 m
}
.

For positive real p0, p1 such that p0+p1 < 1, let M =
M(p0, p1) be the stationary Markov chain with the states 00 ,

01 , 10 and the (non-conditional) probabilities of transitions

as shown in Figure 1. Since the stationary probabilities of

the states 00 , 01 , 10 are 1+p0−p1

2 , 1−p0+p1

4 and 1−p0+p1

4 ,

respectively, the binary entropy h(M) of the Markov chain M

is

h(M) =
1−p0+p1

2
log2

1−p0+p1
4

(10)

+
1+p0−p1

2
log2

1+p0−p1
2

−p0 log2 p0−p1 log2
p1

4 −(1−p0−p1) log2
1−p0−p1

4 .

Next is our main theorem of this section.

00 01

10

1−p0−p1
4

1−p0−p1
4

1−p0−p1
4

1−p0−p1
4 p1

4
p1
4

p0
p1
4

p1
4

Fig. 1. Stationary Markov chain from the proof of Theorem 2.4.

Theorem 2.4: Let τ ∈ (0, 1). Then

R(τ) ≥̺(τ)= sup
p0,p1

{
1+p0−p1

4
+h(M)−1

2
K(τ, p0, p1)

}
,

where p0, p1 range over positive real numbers that satisfy

p0+p1 < 1, and K(τ, p0, p1) and h(M) are defined in (9)

and (10), respectively.

Proof: The words of Jp0,p1,ǫ(n), defined in (3)–(6), are the

typical sequences of the stationary Markov chain which ap-

pears in Figure 1. It is known (generalization of the asymptotic

equipartition property [4, Th. 3.1.1] for Markovian sources)

that the asymptotic growth rate of Jp0,p1,ǫ(n) as n goes to

infinity and as ǫ goes to 0 is

lim
ǫ→0

lim
n→∞

2

n
log2 |Jp0,p1,ǫ(n)| = h(M), (11)

Moreover, the number of times that the symbol 00 appears in

each word x of Jp0,p1,ǫ(n) is at least

∑

a∈Σ3

κ(x; a, 00 ) ≥
(∑

a∈Σ3

µa,00 − 3ǫ

8

)(n
2
−1
)

≥
(
1+p0−p1

2
− ǫ

)
n

2
. (12)

Therefore, for every positive real p0 and p1 that satisfy



p0+p1 < 1, we have

R(τ)
(2), (12)

≥ lim
ǫ→0

lim
n→∞

1

n

((
1+p0−p1

2
−ǫ

)
n

2

+2 log2 |Jp0,p1,ǫ(n)|

− log2 W⌈2τ(n/2−1)⌉(Jp0,p1,ǫ(n))

)

(8), (11)

≥ 1+p0−p1
4

+ h(M)− 1

2
K(τ, p0, p1).

Figure 2 shows the function τ 7→ ̺(τ) depicted alongside

the function τ 7→ ̺N(τ) from [27, Th. 2.1] and the lower

bound of 0.5 on the rate attained by a simple construction

from [22, Sec. 2]. A visible improvement over the last two

lower bounds can be observed on the interval [0, τ⋆=0.0668].
Notice that due to the relationship between wide-sense con-

fusability and ordinary confusability (with overlaps allowed),

̺(τ) is a lower bound on the rate of ⌈τn⌉-grain-correcting

codes with overlaps, which, in turn, is a lower bound on R(τ).

✲ τ

✻

R(τ)

0

0.5

1

0.0566 τ⋆ 0.1

✲̺N(τ) ✙
̺(τ)

Fig. 2. Lower bound ̺(τ) along with ̺N(τ) from [27, Th. 2.1].

III. UPPER BOUNDS ON M(n, t) AND R(τ)

In this section, we will establish new upper bounds on

M(n, t) using two different approaches. The first approach

is based on a connection that we establish between grain-

correcting codes and codes correcting asymmetric errors, and

will also bring about a new upper bound on R(τ). The second

approach is based on the iterative procedure due to Cullina

and Kiyavash [6]. We present the two new upper bounds on

M(n, t) in Section III-A and the upper bound on R(τ) in

Section III-B.

A. Upper bounds on M(n, t)

For positive integers n and t, define MZ(n, t) to be the

size of the largest code of length n correcting t asymmetric

errors 1 → 0 [3]. We start off by establishing a correspondence

between M(n, t) and MZ(n, t), giving rise to the first upper

bound on M(n, t).
Theorem 3.1: Let n be a positive integer and t ≤ n/2 be

an integer. Then

M(n, t) ≤ 2⌈n/2⌉ ·MZ(⌊n/2⌋ , t) .

Proof: Let C be a largest binary t-grain-correcting code of

length n. For a word x = (xi)i∈〈⌈n/2⌉〉, define C(x) as a

subcode of C with codewords containing x as a substring on

the even-indexed positions, namely,

C(x) =
{
c = (ci)i∈〈n〉 ∈ C : for all i ∈ 〈⌈n/2⌉〉 , c2i = xi

}
.

Next, we note that a grain ending at position e can introduce an

error to a word c = (ci)i∈〈n〉 only if ce−1⊕ce = 1, where ⊕ is

the addition modulo 2, and that the value of ce−1⊕ce changes

to a 0, as a consequence. Therefore, if we restrict the grain

patterns to the subset {e ∈ 〈n〉 : e is odd}, the code C(x) can

be transformed into the following code C⊕(x) of length ⌊n/2⌋
and of size |C(x)| correcting t asymmetric errors 1 → 0:

C⊕(x) =
{
y=(c2i⊕c2i+1)i∈〈⌊n/2⌋〉 : c = (ci)i∈〈n〉 ∈ C(x)

}
.

This implies that

M(n, t) = |C| =
∑

x∈Σ
⌈n/2⌉
2

|C(x)| =
∑

x∈Σ
⌈n/2⌉
2

∣∣C⊕(x)
∣∣

≤ 2⌈n/2⌉MZ(⌊n/2⌋ , t).

We now turn to developing the second upper bound on

M(n, t). To this end, we first recast the problem of finding

the largest t-grain-correcting code of length n as a problem

of finding a largest matching in a hypergraph, as defined next

(see also [8][9][11][14][18]).

Let n, t be positive integers, let x ∈ Σn
2 be a word and let

Φt(x) be the set of all binary words of length n which are

obtained by applying a grain pattern (with overlaps disallowed)

of size at most t to x, namely,

Φt(x) = {σS(x) : |S| ≤ t} .

Define a hypergraph H = Hn,t = (V,E) where V = Σn
2 de-

notes the set of hypergraph states and E = {Φt(x) : x ∈ Σn
2}

denotes the set of hyperedges in H, that is, |V | = |E| = 2n.

Let BH be the 2n × 2n vertex-hyperedge incidence matrix of

H, namely, for a state v ∈ V and a hyperedge e ∈ E,

(BH)v,e =

{
1 v ∈ e

0 otherwise
.

Define the matching number

m(H) = max
{
1
⊤z : z ∈ Σ

|V |
2 , BHz ≤ 1

}
,

where 1 is the all-ones column vector of length |V | = 2n,

all operations are over the reals, and the vector inequality

holds component-wise; namely, m(H) is the largest size of

a matching (i.e., a pairwise disjoint set of hyperedges) in

H, and so, m(H) = M(n, t). The matching number m(H)
is clearly bounded from above by the following fractional

matching number

max
{
1
⊤z : z ∈ (R+ ∪ {0})|V |, BHz ≤ 1

}
,

which, by the strong linear programming duality, equals

min
{
1
⊤w : w ∈ (R+ ∪ {0})|V |, B⊤

Hw ≥ 1

}
.



Thus, the sum of entries 1⊤w of any w ∈ (R+∪{0})|V | such

that B⊤
Hw ≥ 1 is a (generalized sphere-packing) upper bound

on M(n, t). The following lemma by Cullina and Kiyavash [6,

Lemma 2], if applied iteratively, demonstrates how to take

such a vector w and obtain an improvement on the upper

bound of 1⊤w.

For a real vector z = (zx)x∈Σn
2

and a word y ∈ (Σ2)
2n ,

let

Sz(y)
△

=
(
B⊤

Hz
)
y

denote the y-th component of the vector B⊤
Hz.

Lemma 3.2: Let w ∈ (R+ ∪ {0})|V | be a vector such

that B⊤
Hw ≥ 1. Let w′ = (w′

x)x∈Σn
2

be a vector of length

2n, defined by

w′
x =

wx

miny:x∈Φt(y) {Sw(y)} , x ∈ Σn
2 . (13)

Then

B⊤
Hw′ ≥ 1 (14)

and

1
⊤w′ ≤ 1

⊤w . (15)

Proof: To prove (14), we notice that

Sw′(x) =
∑

y∈Φt(x)

wy

minz:y∈Φt(z) {Sw(z)}

≥
∑

y∈Φt(x)

wy

Sw(x)
=

∑
y∈Φt(x)

wy

Sw(x)
=

Sw(x)

Sw(x)
= 1

for any x ∈ Σn
2 . To prove (15), we use the fact that Sw(y) ≥ 1

for any y ∈ Σn
2 , hence

1
⊤w′=

∑

x∈Σn
2

wx

miny:x∈Φt(y) {Sw(y)}≤
∑

x∈Σn
2

wx

1
= 1

⊤w .

Remark 3.3: Since the proof of (14) in Lemma 3.2 does

not depend on the validity of the condition B⊤
Hw ≥ 1, we can

first apply (13) to an arbitrary vector w ∈ (R+∪{0})|V | (say,

w = 1) to obtain the vector w′ yielding a first upper bound

of 1⊤w′ on M(n, t), and then continue applying Lemma 3.2

repeatedly to (the descendants of) w′ to obtain ever-improving

upper bounds on M(n, t).

Using Theorem 3.1 along with the best known bounds2 on

MZ(⌊n/2⌋ , t) from [30, Table 10], as well as the iterative

process described by Lemma 3.2 along with Remark 3.3,

results in improvements on the best known upper bounds on

M(n, t), as shown in Table I. This table contains the best

known upper bounds (with the corresponding best known

lower bounds in parenthesis) on M(n, t) for small values of

n and t. Therein, the best upper bounds due to Theorem 3.1

or Lemma 3.2 are marked in bold, whereas the best upper

bounds due to linear optimization of m(H) are typeset in

medium font (with the exception of the best upper bound of 88
on M(9, 1) which was obtained by doubling M(8, 1) = 44).

The best lower bounds on M(n, 1) due to [11, Constr. 1] are

marked with daggers, the best lower bounds on M(n, 2) and

M(n, 3) due to [11, Ex. 4] (or variations thereof) are marked

2Our definition of MZ(n, t) is equivalent to Z(n, t+1) in [30].

with diamonds, and the lower bounds typeset in medium font

are derived from Table IV below (based on our construction

in Section IV), [27, Table 2], and variations thereof. Tight

upper bounds, obtained using exhaustive computer search, are

marked in italics.

TABLE I
BOUNDS ON THE SIZES M(n, t) OF THE LARGEST KNOWN

t-GRAIN-CORRECTING CODES OF LENGTH n.

t
n

2 3 4 5 6 7 8 9 10 11 12 13

1 2 4 6 8 16 26 44 88(72) 172(112) 316(210†) 588(372) 1098(702†)

2 4 8 10 16 22 32 64(44) 106(68⋄) 182(88) 312(136⋄)

3 8 16 18 32 38 64(64) 96(76) 152(128)

t
n

14 15 16 17 18

1 2054(1272) 3930(2400†) 7396(4522) 13974(8428) 26488(15348)

2 512(176) 1024(312⋄) 1792(418⋄) 3264(836⋄) 5810(1318⋄)

3 242(152) 490(260⋄) 802(304) 1316(520⋄) 2048(608)

B. Upper bound on R(τ)

For a positive integer n, define the asymmetric distance

∆(c, c′) between two words c = (ci)i∈〈n〉 and c′ = (c′i)i∈〈n〉

over Σ2 as

∆(c, c′)
△

= max {∆⋆(c, c′),∆⋆(c′, c)} ,

where

∆⋆(c, c′) = |{i ∈ 〈n〉 : ci = 0, c′i = 1}| ,
and the minimum asymmetric distance of a code C ⊆ Σn

2 as

∆(C) △

= min
c,c′∈C:c 6=c′

{∆(c, c′)} .

Let d(c, c′) denote the Hamming distance between two words

c, c′ ∈ Σn
2 and let d(C) denote the minimum Hamming

distance of the code C ⊆ Σn
2 . Let MH(n, t) denote the size

of a largest code of length n over Σ2 correcting t (Hamming)

errors and let

RH(τ) = lim
n→∞

1

n
log2 MH(n, ⌈τn⌉)

denote the (asymptotic) rate of codes of length n over Σ2

correcting ⌈τn⌉ (Hamming) errors. For a real p ∈ [0, 1], let

H(p)
△

= −p log2 p− (1−p) log2(1−p)

denote the binary entropy of p. In the following theorem,

which is the main result of this section, we prove a new upper

bound on R(τ).
Theorem 3.4: Let τ ∈ [0, 1

8 ]. Then

R(τ) ≤ 1

2
(1+RH(2τ)) . (16)

In particular,

R(τ) ≤ ρ(τ)
△

=
1

2

(
1+ min

0<x≤1−8τ
{b(x)}

)
, (17)

where

b(x) = 1+g(x2)−g(x2+8τx+8τ)

and

g(x) = H
(
0.5(1−

√
1−x)

)
.



Proof: Let n be a positive integer and let C be a code of length

n correcting ⌈τn⌉ asymmetric errors of size MZ(n, ⌈τn⌉). Its

asymmetric distance ∆(C) is therefore at least ⌈τn⌉+1 (see [7,

Th. 1]). By an averaging argument, there exists a constant-

weight subcode C(w) of C whose codewords are of Hamming

weight w ∈ 〈n〉 \ {0}, whose size is at least (|C|−2)/(n−1),
and whose asymmetric distance is clearly at least ⌈τn⌉+1.

Since d(c, c′) = 2∆(c, c′) for any two codewords c, c′ ∈
C(w) (see [15, Sec. 2]), one has d(C(w)) ≥ 2(⌈τn⌉+1),
therefore C(w) can correct at least ⌈τn⌉ (Hamming) errors.

The above discussion3 implies

MZ(n, ⌈τn⌉) = |C| ≤ (n−1) |C(w)|+ 2

≤ (n−1)MH(n, ⌈τn⌉) + 2,

which, combined with the result of Theorem 3.1, yields

M(n, ⌈τn⌉) ≤ 2⌈n/2⌉ ·
(
(⌊n/2⌋−1) ·MH(⌊n/2⌋ , ⌈τn⌉)+2

)
.

(18)

Asymptotically, the inequality (18) implies (16). Finally, to

obtain the upper bound (17), we use the second MRRW upper

bound [20, Ch. 17, Th. 37] on RH(2τ).

Figure 3 depicts the upper bound ρ(τ) of Theorem 3.4

along with two previously best known upper bounds ρ1(τ)
(see [14, Th. 6.1]) and ρ2(τ) (see [26, Th. 3.3]) obtained

using information-theoretic and sphere-packing arguments, re-

spectively. The best known lower bound ̺(τ) of Theorem 2.4

is plotted therein for comparison, along with the (ordinary)

Gilbert–Varshamov bound

̺4(τ)
△

= 1−H(2τ) .

In addition, the dotted curve presents the Gilbert–Varshamov

lower bound

̺5(τ)
△

= 1−1

2
H(4τ)

on the rate of the largest ⌈τn⌉-grain-correcting codes of

length n when the grain patterns are restricted to the subset

{e ∈ 〈n〉 : e is odd}. The upper bound ρ(τ) improves on

ρ1(τ) and on ρ2(τ) on the entire interval (0, 1
8 ], and at τ = 1

8 ,

it coincides with the lower bound of 1
2 on R(τ) obtained by a

simple construction from [22, Sec. 2]. The upper bound ρ(τ)
also improves on the entire interval (0, 1

8 ] on the upper bound

ρ3(τ) derived from [11, Th. 1] on the rate of ⌈τn⌉-grain-

correcting codes of length n when overlaps are allowed.

The fact that the new upper bound ρ(τ) meets the lower

bound of 1
2 at τ = 1

8 implies a very slow decrease in the

size M(n, ⌈τn⌉) of a largest ⌈τn⌉-grain-correcting code of

length n when τ runs from 1
8 to 1

2 , which we demonstrate

next for τ ≥ 1
4 . Let t be a positive integer and let n = 4t.

Since a largest code of length n/2 = 2t correcting t = n/4
asymmetric errors is of size4 2, by Theorem 3.1, the size

3The result we developed in this discussion is a particular case of a more
general claim obtained by substituting τ1 = τ2 = δ1 = δ2 = δ3 = 0 in [29,
Th. 4].

4One such code is
{

02t, 12t
}

. Conversely, any binary code C of length 2t
correcting t asymmetric errors must have at most one codeword of weight
less than t, by the definition of the asymmetric distance and [7, Th. 1]. Since
the supports of any two distinct words x,x′ of length 2t and weight at least
t+1 have a nonempty intersection, we have 0 < ∆(x,x′) ≤ t, thus only
one word of weight at least t+1 can be in C, implying |C| ≤ 2.

✲ τ

✻

R(τ)

0

1

2

1

0.0668 1

8

❄

ρ1(τ)

❄

ρ2(τ)

❄

ρ3(τ)

❄

ρ(τ)

✻

̺4(τ)

✻

̺(τ)

✻

̺5(τ)

Fig. 3. Upper bound ρ(τ) along with upper bounds ρ1(τ), ρ2(τ) and ρ3(τ)
and lower bounds ̺(τ), ̺4(τ), ̺5(τ).

M(n, n/4) of a largest n/4-grain-correcting code of length n
is at most 2n/2+1. As, due to [22, Prop. 1], M(n, n/2) = 2n/2,

when t runs from n
4 to n

2 , the largest code size M(n, t)
decreases only by at most a factor of 2.

IV. CONSTRUCTIONS OF 1-GRAIN-CORRECTING CODES

In this section, we present a construction of 1-grain-

correcting codes based on the well-known partitioning tech-

nique (Al-Bassam et al. [1] used it to construct asymmetric

single-error-correcting codes; also see [2] and [24]). To this

end, we will need a somewhat stronger definition of confus-

ability. Two binary words x,x′ ∈ Σn
2 of length n will be

referred to as 1-strongly-confusable (in short, 1-sc) if either

0x ∈ Σn+1
2 and 0x′ ∈ Σn+1

2 are 1-confusable or 1x ∈ Σn+1
2

and 1x′ ∈ Σn+1
2 are 1-confusable (in the ordinary sense). A

code of length n will be referred to as 1-grain-correcting in

the strong sense if its codewords are pairwise not 1-sc.

INPUT: graph G = (V,E);
π ← ∅; // π is a partition of V
while V 6= ∅ do {
B ←MAXIMUMCLIQUE(G);
G ← G \ B; // remove all the states of B from V and

// all the edges connected to B from E
ADD(π,B); // append B to the end of the list π

}

Fig. 4. Greedy procedure to obtain a partition π of the graph G.

Example 4.1: The words x = 0001 ∈ Σ4
2 and x′ =

1011 ∈ Σ4
2 are ∞-confusable in the ordinary sense, but 1-

sc because 1x ∈ Σ5
2 and 1x′ ∈ Σ5

2 are 1-confusable in the



TABLE II
SIZES OF PARTITIONS Ji OF Σb

2
FOR VARIOUS VALUES OF b.

b J0 J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

1 1 1

2 2 1 1

3 2 2 2 2

4 4 4 3 3 2

5 7 6 6 5 5 2 1

6 12 10 10 10 9 8 5

7 22 19 19 18 17 15 11 6 1

8 35 35 33 32 30 27 23 20 15 5 1

TABLE III
SIZES OF PARTITIONS Ki OF Σq

2,EVEN
FOR VARIOUS VALUES OF q.

q K0 K1 K2 K3 K4 K5 K6 K7 K8 K9

1 1

2 2

3 2 1 1

4 4 2 2

5 5 4 3 3 1

6 8 6 6 6 4 2

7 15 12 11 10 7 6 3

8 24 20 20 19 16 15 10 4

9 40 38 36 34 31 27 22 17 10 1

9 39 38 37 34 32 28 23 16 6 3

ordinary sense by the grain patterns S = {1} and S ′ = {3}
applied to 1x and 1x′, respectively.

Let b, b⋆ be positive integers and, for i ∈ 〈b⋆〉, let the sets

Ji be 1-grain-correcting codes in the strong sense that form a

partition of Σb
2 (viz., Ji ∩Ji′ = ∅ for any distinct i, i′ ∈ 〈b⋆〉,

and
⋃

i∈〈b⋆〉 Ji = Σb
2). Let q, q⋆ be positive integers and, for

i ∈ 〈q⋆〉, let the sets Ki be 1-grain-correcting codes in the

strong sense that form a partition of the set

Σq
2,even = {x ∈ Σq

2 : w (x) is even}
(of even-weighted binary words of length q). Finally, let

C =
⋃

i∈〈min{b⋆,q⋆}〉

Σ2 × Ji ×Ki (19)

be the union of Cartesian products Σ2 × Ji × Ki for i ∈
〈min {b⋆, q⋆}〉. The code C is of length n = b+q+1 and of

size

|C| = 2 ·
∑

i∈〈min{b⋆,q⋆}〉

|Ji| · |Ki|. (20)

The following theorem states that the code C is a 1-grain-

correcting code.

Theorem 4.2: The code C of length n = b+q+1 defined

as in (19) is a 1-grain-correcting code.

Proof: Let c = (z x y), c′ = (z x′ y′) be two distinct

codewords in C such that z ∈ Σ2, x = (xj)j∈〈b〉 ∈ Ji,

x′ = (x′
j)j∈〈b〉 ∈ Ji′ , y ∈ Ki, and y′ ∈ Ki′ , for

i, i′ ∈ 〈min {b⋆, q⋆}〉, and w.l.o.g. assume that z = 0.

TABLE IV
SIZES OF THE 1-GRAIN-CORRECTING CODES DUE TO THEOREM 4.2.

n 10 11 12 13 14 15 16 17 18

Size 112 206 372 686 1272 2384 4522 8428 15348

• If i = i′ and x 6= x′, then c and c′ are not 1-confusable

because their prefixes of length b+1, 0x and 0x′, are

not 1-confusable (due to the fact that Ji is a 1-grain-

correcting code in the strong sense).

• If i = i′ and y 6= y′, then c and c′ are not 1-confusable

because their suffixes of length q+1, xb−1y and x′
b−1y

′,

are not 1-confusable (due to the fact that Ki is a 1-grain-

correcting code in the strong sense).

• Finally, if i 6= i′, then necessarily x 6= x′ and y 6= y′,

therefore

d(x,x′) ≥ 1 and d(y,y′) ≥ 2,

implying that d(c, c′) ≥ 3 which makes it impossible for

c and c′ to be 1-confusable (as 1-confusable words must

be at Hamming distance at most 2 from one another).

It remains to show how to obtain the partitions Ji for i ∈
〈b⋆〉 and Ki for i ∈ 〈q⋆〉 with the desired properties. Define a

non-confusability graph Gn(Z) = (Z, E), where Z ⊆ Σn
2 , as

an undirected graph whose states are all the words in Z and

whose set of edges E contains an edge between x,x′ ∈ Z
if and only if the words x and x′ are not 1-sc (contrast with

the definition of the confusability graph in [22, Sec. 3-C]).

Figure 4 shows a greedy procedure which we used to find

partitions Ji for i ∈ 〈b⋆〉 and Ki for i ∈ 〈q⋆〉. The sets Ji

are obtained by applying the procedure to G = Gb(Σ
b
2) for

i ∈ 〈b⋆〉 and then the sets Ki are obtained by applying the

procedure to G = Gq(Σ
q
2,even) for i ∈ 〈q⋆〉 (for the obtained

results, see Tables II and III).

Using Tables II and III, we are able to construct codes C of

length n = b+q+1 in the fashion of (19) as illustrated in the

following example.

Example 4.3: Let b = 6 and q = 7. Then the size of the

code C of length b+q+1 = 14 obtained in the vein of (19) is

|C| = 2 · (12·15+10·12+10·11+10·10+9·7+8·6+5·3)
= 2 · 636 = 1272.

This code is currently the largest known 1-grain-correcting

codes of length 14 (see Table IV).

Table IV lists the sizes of the 1-grain-correcting codes

we were able to obtain due to Theorem 4.2 for n ∈
{10, 11, . . . , 18}. Marked in bold are the sizes of the largest

known 1-grain-correcting codes (also to be found in the first

row of Table I).

V. GRAIN DETECTION

In [27, Prop. 5.1], we have proved the existence of ∞-

grain-detecting codes C (that is, codes capable of detecting any

number of grain errors) of length n over Σ2 with redundancy

n− log2 |C| ≤ 1.5 log2 n+O
(
1
n

)

for the overlapping and nonoverlapping scenarios. Employing

arguments similar to those used in the proof of Theorem 3.1,

we conclude that the size of a largest ∞-grain-detecting code

of length n over Σ2 is bounded from above by 2⌈n/2⌉ times

the size of a largest code of length ⌊n/2⌋ over Σ2 capable of

detecting any number of asymmetric errors, which is known



to be
(
⌊n/2⌋
⌊n/4⌋

)
[28]. Altogether, this implies a lower bound of

1
2 log2 n+O(1) on the minimum redundancy

rn
△

= n− max
C⊆Σn

2
is an

∞-grain-detecting code

{log2 |C|}

of ∞-grain-detecting codes of length n when overlaps are

allowed or disallowed.

For the overlapping scenario, the upper bound on the size of

a largest ∞-grain-detecting code of length n over Σ2 can be

improved by a constant factor (namely, by an additive constant

term in the redundancy). In what follows, we will show how

to obtain such an upper bound; the proof technique is inspired

by the Christmas tree pattern [16, Sec. 7.2.1.6] of arranging

2n binary strings into chains of subsets.

Define the following (partial) order relation � between two

words x and y of the same length over Σ2: a word x is

dominated by a word y, x � y, if there exists a grain pattern

S such that σS(y) = x. Our construction will be iterative

where at each step ℓ = 1, 2, 3, . . . we will create sℓ new sets

Cℓ;j of words of length ℓ for j ∈ 〈sℓ〉 out of sℓ−1 sets Cℓ−1;j

of words of length ℓ−1 for j ∈ 〈sℓ−1〉. Each set Cℓ;j will

be shown (in Theorem 5.4) to be totally ordered with respect

to �, and the “biggest” and “smallest” words in Cℓ;j will be

denoted by F(Cℓ;j) and f(Cℓ;j), respectively. The value of 2sn
will then determine an improved upper bound on the size of

a largest ∞-grain-detecting code of length n over Σ2 when

overlaps are allowed, as will be explained in Appendix B.

Construction 5.1: Basis (ℓ = 1). Let C1;0 = {0}.

Step (ℓ ≥ 2). For j ∈ 〈sℓ−1〉, from a set Cℓ−1;j of size 1, we

derive a new set

(C1) Cℓ−1;j × Σ2.

From a set Cℓ−1;j of size at least 2 whose words all end with

a ∈ Σ2, we derive two new sets

(C2) (Cℓ−1;j × {a}) ∪ {f(Cℓ−1;j)a},

(C3) (Cℓ−1;j × {a}) \ {f(Cℓ−1;j)a},

where a denotes the binary complement of the symbol a ∈ Σ2.

In sets Cℓ−1;j of size at least 2 whose words not all end

with the same symbol, this construction will guarantee the

existence of only one word c ∈ Cℓ−1;j whose last symbol a
differs from that of F(Cℓ−1;j). For a set Cℓ−1;j of this kind,

we derive two new sets

(C4) (Cℓ−1;j × {a}) ∪ {ca},

(C5) (Cℓ−1;j × {a}) \ {ca}.

Remark 5.2: Notice that in cases (C3) and (C5) of Con-

struction 5.1, we create new sets whose words all end with the

same symbol, whereas in cases (C1), (C2) and (C4), the newly

created sets Cℓ;j include only one word whose last symbol

differs from that of F(Cℓ;j). Therefore these are the only two

types of sets with which Construction 5.1 operates.

Example 5.3: The first four rounds of Construction 5.1

yield C1;0 = {0}, C2;0 = {00, 01}, C3;0 = {000, 001, 010},

C3;1 = {011}, C4;0 = {0001, 0011, 0010, 0101}, C4;1 =
{0000, 0100}, C4;2 = {0111, 0110}.

We have reached the main theorem of this section (with proof

in Appendix B).

Theorem 5.4: For any positive integer n and any j ∈
〈sn〉, the set Cn;j is totally ordered with respect to �. More-

over, sn =
(

n−1
⌊(n−1)/2⌋

)
for any positive integer n, thereby

implying the upper bound of 2
(

n−1
⌊(n−1)/2⌋

)
on the size of a

largest ∞-grain-detecting code of length n over Σ2 (with

overlaps allowed).

Since limn→∞ 2⌈n/2⌉
(
⌊n/2⌋
⌊n/4⌋

)
/2
(

n−1
⌊(n−1)/2⌋

)
=

√
2, for large

values of n, the upper bound on the size of ∞-grain-detecting

codes of length n over Σ2 (with overlaps allowed) due to

Theorem 5.4 is ≈
√
2 times smaller than the upper bound

2⌈n/2⌉
(
⌊n/2⌋
⌊n/4⌋

)
on the size of ∞-grain-detecting code of length

n over Σ2 that can be obtained from Theorem 3.1 (see the

discussion at the beginning of this section).

TABLE V
SIZES OF LARGEST t-GRAIN-DETECTING CODES OF LENGTH n WHEN

OVERLAPS ARE DISALLOWED.

t
n

2 3 4 5 6 7 8

1 2 4 8 16 32 64 128

2 8 10 18 34 58

3 18 32 56

4 56

TABLE VI
SIZES OF LARGEST t-GRAIN-DETECTING CODES OF LENGTH n WHEN

OVERLAPS ARE ALLOWED.

t
n

2 3 4 5 6 7 8

1 2 4 8 16 32 64 128

2 4 6 10 18 30 52

3 6 8 12 22 42

4 8 12 20 32

5 12 20 32

Tables V and VI list the sizes of the largest t-grain-detecting

codes of length n over Σ2 when overlaps are disallowed and

allowed, respectively, for small values of n and t, found using a

computer search.5 It can be seen that already for length n = 5,

there is a gap between the upper bound of 2
(
4
2

)
= 12 on the

size of ∞-grain-detecting codes of length 5 when overlaps are

allowed due to Construction 5.1 and the size 8 of a largest ∞-

grain-detecting code. However, using ad hoc arguments, it is

still possible to partition the 16 words in 0Σ4
2 into the four

sets

C5;0 = {00000, 00100, 01000, 01001} ,
C5;1 = {00001, 00011, 00010, 00101} ,
C5;2 = {00110, 01110, 01100, 01010} ,
C5;3 = {00111, 01111, 01101, 01011}

of size 4, which are totally ordered with respect to �. This,

in turn, results in a tight upper bound of 8 on the size of ∞-

grain-detecting codes of length 5 when overlaps are allowed.

On the other hand, using a computer search, one can

establish that for n = 6, the smallest number of totally ordered

sets C6;j required to partition 0Σ5
2 is 7, which results in the

5The entries for t = 1 in both tables follow from the simple observation
that the Hamming distance between two distinct codewords that start with the
same symbol in a binary 1-grain-detecting code must be at least 2 and that a
binary parity code of any length is 1-grain-detecting.



upper bound of 14 on the size of a largest ∞-grain-detecting

code of length 6 with overlaps; this bound is strictly greater

than the size 12 of a largest such code. One such partition is

given by

C6;0 = {000000, 000001, 000010, 000101, 001010} ,
C6;1 = {000110, 000100, 001100, 001101, 001010} ,
C6;2 = {000011, 000111, 001011, 010111, 010101} ,
C6;3 = {001000, 011000, 010000, 010001, 010010} ,
C6;4 = {001001, 011001, 011011, 010011} ,
C6;5 = {001111, 011111, 011110, 011101} ,
C6;6 = {001110, 011100, 011010, 010100} .

Similar phenomena occur when overlaps are disallowed: for

n = 5 it is possible to partition 0Σ4
2 into 5 totally ordered

sets using ad hoc arguments, yet for n = 6 it is provably

impossible to partition 0Σ5
2 into 9 totally ordered sets.

APPENDICES

A. PROOF OF LEMMA 2.3

Define the following “almost complete” directed graph G =
(V,E). Its set of states is defined as V = Σ2

3, whereas its set

of edges is

E = (V × V ) \ {(01 10 , 10 01 ), (10 01 , 01 10 )} .
Define the subset of states

V0 = {00 00 , 00 01 , 01 00 , 01 01 , 10 10}
as the set of safe states. Traversing a path γ = (ℓiri)i∈〈n/2〉

of length6 1
2n−1 in the graph G produces a pair of words

ℓ = (ℓi)i∈〈n/2〉 and r = (ri)i∈〈n/2〉 over Σ3.

Remark A.1: Notice that the pair of edges

(01 10 , 10 01 ) and (10 01 , 01 10 ),

which make up the difference between G and the complete

directed graph on |V | = 9 states, correspond to the pair of

subwords 01 10 and 10 01 . For any pair of ternary words

x = (xi)i∈〈n/2〉,x
′ = (x′

i)i∈〈n/2〉 ∈ Σ
n/2
3 and j ∈ 〈n/2−1〉

such that xjxj+1 = 01 10 and x′
jx

′
j+1 = 10 01 , one has that

E−1(x) and E−1(x′) are non-confusable. Therefore, we did

not include these two edges in our graph, as we are interested

in counting finitely-cws pairs of clouds.

The following lemma (with proof very similar to [27,

App. A]) establishes a correspondence between pairs of clouds

and paths in the graph G.

Lemma A.2: Let t be a positive integer, t ≤ n−1. Let Wt

denote the set of all (ordered) pairs (x,x′) ∈ Σ
n/2
3 × Σ

n/2
3

of ternary words whose clouds are t-cws and let Πt be the

following set of paths (of length 1
2n−1) in G:

Πt=
{
(ℓiri)i∈〈n/2〉 : (ℓ0r0) ∈ V0, d(ℓ, r) ≤ 2t

}
,

where ℓ = (ℓi)i∈〈n/2〉 and r = (ri)i∈〈n/2〉, and d(ℓ, r)
denotes the Hamming distance between ℓ and r when ℓ and

6The length of a path γ in the graph equals the number of edges along
γ; since G has no parallel edges, we will specify paths in G as sequences of
states.

r are viewed as binary words of length n. Then there exists a

one-to-one mapping from Wt to Πt that maps pairs of words

(x,x′) = ((xi)i∈〈n/2〉, (x
′
i)i∈〈n/2〉) whose clouds are t-cws to

paths (xix
′
i)i∈〈n/2〉.

For an edge e = (ℓr, ℓ′r′), define the function ϕ : E → 〈3〉3
by ϕ(e) = (ν(e) ω(e) χ(e)), where ν(e) = d(ℓ′, r′) (with ℓ′

and r′ being viewed as binary words of length 2),

ω(e) =





2 ℓℓ′ = 00 00 and rr′ = 00 00

1 ℓℓ′ = 00 00 and rr′ 6= 00 00 or

ℓℓ′ 6= 00 00 and rr′ = 00 00

0 otherwise

,

and

χ(e) =





2 ℓℓ′, rr′ ∈ {01 , 10}2

1 ℓℓ′ ∈ {01 , 10}2 and rr′ /∈ {01 , 10}2 or

ℓℓ′ /∈ {01 , 10}2 and rr′ ∈ {01 , 10}2

0 otherwise

.

The function ν(e) counts the smallest number of (possibly,

overlapping) grains making ℓ′ and r′ cws (when viewed as

words of length 2 over Σ2); the function ω(e) counts the

number of transitions from 00 to 00 in the words ℓℓ′ and

rr′ (viewed as words of length 2 over Σ3); the function χ(e)
counts the number of transitions from either 01 or 10 to either

01 or 10 in the words ℓℓ′ and rr′ (again, viewed as words of

length 2 over Σ3).

Define Γ as the set of all the cycles in G of length 1
2n that

start and terminate in the same state of V0. Now, set τ ∈ (0, 1),
set p0, p1 ∈ (0, 1) such that p0+p1 < 1, let ǫ > 0 and define

Uτ,p0,p1,ǫ = {(u1 u2 u3) : − ǫ < u1 < 4τ+ǫ,

|u2 − 2p0| , |u3 − 2p1| < 2ǫ} ,
and

Γτ,p0,p1,ǫ = Γτ,p0,p1,ǫ(n)

=
{
γ = (vi)i∈〈n/2〉 ∈ Γ : EPγ

{ϕ} ∈ Uτ,p0,p1,ǫ

}
,

where EPγ
{ϕ} =

∑
e∈E Pγ(e)ϕ(e) is the expected value of

ϕ with respect to the empirical probability distribution

Pγ(e) =
2

n
|i ∈ 〈n/2〉 : (vi, vi+1) = e| .

The set Γτ,p0,p1,ǫ stands for all the cycles of length 1
2n in G

starting in a safe state that represent pairs of ternary words

(x,x′) of length 1
2n at Hamming distance at most (4τ+ǫ)n2

from one another (when viewed as binary words of length n),

whose total number of transitions from 00 to 00 is within

(p0 ± ǫ)n and whose total number of transitions from either

01 or 10 to either 01 or 10 is within (p1± ǫ)n. Also, for the

same τ, p0, p1, ǫ, define

Πτ,p0,p1,ǫ = Πτ,p0,p1,ǫ(n) =
{
γ ∈ Π⌈2τ(n/2−1)⌉ :∣∣EPγ

{ω} − 2p0
∣∣ ≤ ǫ,

∣∣EPγ
{χ} − 2p1

∣∣ ≤ ǫ
}
.

The set Πτ,p0,p1,ǫ contains paths of length 1
2n−1 in G that

represents pairs of ternary words (x,x′) of length n, whose

clouds are ⌈2τ(n/2−1)⌉-cws, whose total number of transi-

tions from 00 to 00 is within (2p0±ǫ)( 12n−1) and whose total



number of transitions from either 01 or 10 to either 01 or 10

is within (2p1±ǫ)( 12n−1).

The following lemma claims that there exist at least as many

cycles in Γτ,p0,p1,ǫ as paths in Πτ,p0,p1,ǫ (for a similar proof,

see [27, Lemma 2.11]).

Lemma A.3: Let τ ∈ (0, 1), let ǫ > 0, and let p0, p1 ∈ (0, 1)
such that p0+p1 < 1. Then, for n ≥ 4/ǫ,

|Πτ,p0,p1,ǫ(n)| ≤ |Γτ,p0,p1,ǫ(n)| .

In the proof of Lemma 2.3, we use special cases of [17,

Lemma 2] and [17, Lemma 5] which we cite below (in

Lemmas A.4 and A.5) and which will aid us in establishing

the connection between the number of cycles Γτ,p0,p1,ǫ and

an optimization of a convex function subject to linear equality

and inequality constraints (we also refer the reader to [5,

Lemma 2], [19, pp. 312–316], [23, Ch. 2, Th. 25], and [25,

Sec. 28]). In both lemmas, MG(f ;U) denotes the set of all

stationary Markov chains M on a graph G = (VG, EG) such

that EM {f} ∈ U ⊆ R
k, for a positive integer k and a given

function f : EG → R
k.

Lemma A.4: Let G = (VG, EG) be a primitive7 directed

graph and f : EG → R
k be a function. Let U be an open

rectangular parallelepiped
∏

i∈〈k〉 (s̃i, si) and let Γn denote

the set of all cycles of length n in G. Then

lim
n→∞

1

n
log2

∣∣{γ ∈ Γn : EPγ
{f} ∈ U

}∣∣ = sup
M∈MG(f ;U)

h(M),

where

h(M) = −
∑

v∈VG:
π(v)>0

∑

v′:e=(v,v′)∈EG

s.t. M(e)>0

M(e) log2
M(e)

π(v)

is the binary entropy of a stationary Markov chain M and

π(v) =
∑

v′:e=(v,v′)∈EG

M(e)

is the stationary probability to be in a state v ∈ VG along a

random walk on G.

Let k be a positive integer, G = (VG, EG) be a directed

graph, z = (zi)i∈〈k〉 be a vector of positive real indeterminates

and f = (fi)i∈〈k〉 : EG → R
k be a function. Define the

parametric matrix AG(z) over R (with rows and columns

indexed by the states of VG) as

[AG(z)]v,v′∈VG
=





zf(e)=
∏

i∈〈k〉

z
fi(e)
i if e=(v, v′)∈EG

0 otherwise

.

(21)

Lemma A.5: Let G = (VG, EG) be a directed graph. Let

p = (pi)i∈〈k′〉 ∈ [0, 1]k
′

be a vector and let f : EG → R
k,

f ′ : EG → R
k′

be functions. Let U be a closed rectangular

7A directed graph is primitive if it is strongly connected and the greatest
common divisor of the lengths of its cycles is 1.

parallelepiped
∏

i∈〈k〉 [0, si]. Then

sup
M∈MG(f ;U): EP {f ′}=p

h(M)

= inf
z,h

{
log2 λ(AG(z,h))−

∑

i∈〈k〉

si log2 zi−
∑

i∈〈k′〉

pi log2 hi

}
,

where λ(·) denotes the spectral radius of a square real matrix,

z = (zi)i∈〈k〉 ranges over (0, 1]k and h = (hi)i∈〈k′〉 ranges

over (0,∞)k
′

.

Now we are in a position to prove Lemma 2.3.

Proof of Lemma 2.3: We will apply Lemmas A.4 and A.5 to

our graph G = (V,E) with f = ϕ = (ν ω χ). Specifically, let

z ∈ (0, 1] and h,m ∈ (0,∞) be indeterminates, and define the

matrix AG(z, h,m) indexed by the states of G as a particular

case of (21):

[AG(z, h,m)]v,v′∈V =

{
zν(e)hω(e)mχ(e) if e=(v, v′)∈E
0 otherwise

.

Apply Lemma A.4 to the case where G = G, U = Uτ,p0,p1,ǫ,

and f = ϕ, and combine it with the result of Lemma A.3 to

obtain

lim
n→∞

2

n
log2 |Πτ,p0,p1,ǫ(n)| ≤ sup

M∈MG(ϕ;Uτ,p0,p1,ǫ)

h(M) .

By the continuity of the functions M 7→ EM(ϕ) and M 7→
h(M),

lim
ǫ→0

lim
n→∞

2

n
log2 |Πτ,p0,p1,ǫ(n)| ≤ sup

M∈MG(ϕ;Uτ,p0,p1
)

h(M) ,

where

Uτ,p0,p1
= {(u 2p0 2p1) : u ∈ [0, 4τ ]} .

Applying Lemma A.5 with G = G, f = ν, f ′ = (ω χ),
U = [0, 4τ ], and p = (2p0 2p1) yields

lim
ǫ→0

lim
n→∞

2

n
log2 |Πτ,p0,p1,ǫ(n)|

≤ inf
z∈(0,1],

h,m∈(0,∞)

{
log2 λ(AG(z, h,m)) (22)

− 4τ log2 z − 2p0 log2 h− 2p1 log2 m
}
.

It follows from Lemma A.2 that

lim
ǫ→0

lim
n→∞

2

n
log2 W⌈2τ(n/2−1)⌉(Jp0,p1,ǫ(n)) (23)

≤ lim
ǫ→0

lim
n→∞

2

n
log2 |Πτ,p0,p1,ǫ(n)|.

Employing the Moore algorithm [21, Sec. 2.6], we merge the

states of G to reduce the order of the matrix AG(z, h,m) all

the while keeping its spectral radius intact. Specifically, the

states in {00 01 , 10 00 , 00 10 , 01 00} can be merged into

superstate 1, the states in {01 01 , 10 10} — into superstate

2, the states in {01 10 , 10 01} — into superstate 3 (and state

00 00 can be renamed to superstate 0). The resulting reduced

matrix AG(z, h,m) appears in (7). Plugging AG(z, h,m)
instead of AG(z, h,m) in (22) and combining the obtained

result with (23) yield (8).



B. PROOF OF THEOREM 5.4

The result of Theorem 5.4 follows by combining the results

of Lemmas B.1, B.2, and Corollary B.3 below. Lemma B.1,

coming next, demonstrates by induction on ℓ that each set Cℓ;j

is totally ordered with respect to � which, in turn, justifies the

use of the operators f(·) and F(·) in Construction 5.1.

Lemma B.1: For any positive integer ℓ and any j ∈ 〈sℓ〉,
the set Cℓ;j is totally ordered with respect to �.

Proof: Readily, the set C1;0 = {0} is totally ordered, which is

the basis of our induction proof. As for the induction step, let

us assume that each one of the sets Cℓ−1;j is totally ordered for

every j ∈ 〈sℓ−1〉. To prove the statement of the lemma, it will

suffice to take two words x,y ∈ Cℓ−1;j such that x � y and

show the order between all the words in Cℓ;j′ whose prefixes

of length ℓ−1 are x and y, for each one of the cases (C1)–(C5)

in Construction 5.1.

(C1) In this case, x = y. When x ends with a 0, the order

between x0 and x1 is x0 � x1, whereas when x ends with

a 1, the order is x1 � x0.

(C2) When x 6= f(Ci−1;j), the order between xa and ya is

xa � ya; when x = f(Ci−1;j), the order between xa, xa,

and ya is xa � xa, xa � ya, and xa � ya.

(C3) The order between xa and ya is xa � ya.

(C4) When x,y 6= c, the order between xa and ya is xa �
ya; when x = c, the order between xa, xa, and ya is

xa � xa, xa � ya, and xa � ya; when y = c, the

order between xa, ya, and ya is xa � ya, ya � ya, and

xa � ya.

(C5) The order between xa and ya is xa � ya.

In light of Lemma B.1 and by the simple observation that

{Cn;j : j ∈ 〈sn〉} is a partition of 0Σn−1
2 for a positive integer

n, each set Cn;j for j ∈ 〈sn〉 can contribute at most one

word to an ∞-grain-detecting code of length n. Therefore, by

extending the above argument to all the words of length n that

start with a 1, we obtain an upper bound of 2sn on the size

of a largest ∞-grain-detecting code of length n. It is left to

find the value of sn; we will show that it equals the number(
n−1

⌊(n−1)/2⌋

)
of walks of length n−1 on the square lattice from

the origin (0, 0) by moving down or moving right, all the while

staying on the points (x, y) satisfying x+y ≥ 0 [10, Sec. 2].

This observation gives rise to the following lemma.

Lemma B.2: Let ℓ be a positive integer and let x =
(xi)i∈〈ℓ〉 be a word of length ℓ over Σ2. For a positive integer

k ∈ 〈ℓ〉 \ {0}, let

pk(x) = 2 |{s ∈ 〈k〉 : xs 6= xs+1}| − k

= |{s ∈ 〈k〉 : xs 6= xs+1}| − |{s ∈ 〈k〉 : xs = xs+1}|
be the difference between the number of symbol alternations

and the number of symbol repetitions in the prefix of length

k+1 of x. Then for any j ∈ 〈sℓ〉, the only word x in Cℓ;j

which satisfies pk(x) ≥ 0 for all k ∈ 〈ℓ〉 \ {0} is F(Cℓ;j).
Proof: By induction on ℓ, one can readily see that for any

positive integer ℓ ≥ 2 and any j ∈ 〈sℓ〉, one has

|Cℓ;j | = pℓ−1(F(Cℓ;j))+1 . (24)

We will prove the claim of the lemma by induction on ℓ.
Clearly, the claim holds for ℓ = 2, namely, the only word x

in C2;0 that satisfies p1(x) ≥ 0 is F(C2;0) = 01. As for the

induction step, let us assume that for ℓ ≥ 3, the only word

x in each one of the sets Cℓ−1;j which satisfies pk(x) ≥ 0
for all k ∈ 〈ℓ−1〉 \ {0} is F(Cℓ−1;j). To prove the claim of

the lemma, it will suffice to take x = F(Cℓ−1;j) and, for each

one of the cases (C1)–(C5), show that the word y in Cℓ;j′ ,

whose prefix of length ℓ−1 is x, satisfies pk(y) ≥ 0 for all

k ∈ 〈ℓ〉 \ {0} if and only if y = F(Cℓ;j′).

(C1) Without loss of generality, x ends with a 0 and

x1 = F(Cℓ;j′). Since pℓ−1(x1) = 1 + pℓ−2(x) ≥ 1
by the induction hypothesis and pk(x1) = pk(x) for

k ∈ 〈ℓ−1〉 \ {0}, the word x1 satisfies pk(x1) ≥ 0 for all

k ∈ 〈ℓ〉 \ {0}. Moreover, by (24), pℓ−2(x) = 0, therefore

pℓ−1(x0) = −1 implying that x1 is the only word y in

Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈ 〈ℓ〉 \ {0}.

(C2),(C4) In these cases, the only word in Cℓ;j′ whose prefix

is x is xa. Since x ends with a, by the induction hypothesis

one has pℓ−1(xa) = pℓ−2(x)+1 ≥ 1, so the only word y

in Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈ 〈ℓ〉 \ {0} is xa.

(C3),(C5) In these cases, the only word in Cℓ;j′ whose prefix

is x is xa. Since x ends with a, by the induction hypothesis

and by (24), one has pℓ−1(xa) = pℓ−2(x)−1 ≥ 0, hence

the only word y in Cℓ;j′ satisfying pk(y) ≥ 0 for all k ∈
〈ℓ〉 \ {0} is xa.

Corollary B.3: Let ℓ be a nonnegative integer. Then

sℓ =

(
ℓ−1

⌊(ℓ−1)/2⌋

)
.

Proof: Due to the result of Lemma B.2 and the observation that

{Cℓ;j : j ∈ 〈sℓ〉} is a partition of 0Σℓ−1
2 , instead of counting

different sets Cℓ;j , we can count the number of “biggest” words

x = (xi)i∈〈ℓ〉 ∈ 0Σℓ−1
2 which satisfy |pk(x)| ≥ 0 for all

k ∈ 〈ℓ〉 \ {0}. Now, there is a natural 1-to-1 correspondence

between such words and walks of length ℓ−1 on the square

lattice from the origin (0, 0) by moving down or moving right,

all the while staying on the points (x, y) satisfying x+y ≥ 0,

specifically, we move right at step k of that walk if xk−1 6= xk

and move down otherwise. The number of such walks is, in

turn,
(

ℓ−1
⌊(ℓ−1)/2⌋

)
.
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