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Abstract—Dictionary learning (DL) techniques aim to find
sparse signal representations that capture prominent character-
istics in a given data. Such methods operate on a data matrix
Y € RVXM | where each of its columns y; € R™N constitutes a
training sample, and these columns together represent a sampling
from the data manifold. For signals y € RY residing on weighted
graphs, an additional challenge is incorporating the underlying
geometric structure of the data domain into the learning process.
In such cases, the topological graph structure may provide a cru-
cial interpretation for the columns, while the data manifold itself
may also possess a low-dimensional intrinsic structure that should
be taken into account. In this work, we propose a novel dictionary
learning algorithm for graph signals that simultaneously takes into
account the underlying structure in both the signal and the man-
ifold domains. Specifically, we require that the dictionary atoms
are smooth with respect to the graph topology, as encapsulated by
the graph Laplacian matrix. Furthermore, we propose to learn this
graph Laplacian within the dictionary learning process, adapting
it to promote the desired smoothness. Utilizing the manifold struc-
ture, we propose to encourage the smoothness of the sparse rep-
resentations on the data manifold in a similar manner. Both these
smoothness forces implicitly enhance the learned dictionary. The
efficiency of the proposed approach is demonstrated on synthetic
examples as well as on real data, showing that it outperforms other
dictionary learning methods in typical problems such as resistance
to noise and data completion.

Index Terms—Dictionary learning, dual graph regularization,
graph Laplacian, graph signal processing, manifold structure,
sparse approximation.

1. INTRODUCTION

HE era of big data introduces new challenges to classic
T signal processing applications. In numerous problems, the
signals to be handled have an underlying complicated geomet-
ric topology, which could be represented using a graph struc-
ture. Examples of such signals can be found in applications of
transportation, energy, social networks, sensor networks, and
more [1].

A popular and highly effective approach taken for solving
common signal processing problems such as denoising, data
completion etc. is sparse representation of the signals over a
trained dictionary. In this paper we shall be focusing on pro-
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cessing of graph-structured signals via sparse representation
modeling and learned dictionaries.

Seeking a representative dictionary for graph signals, it is
possible to ignore the graph structure and view the signals as
vectorsin R, similarly to signal representation in the Euclidean
domain. Then, dictionary learning approaches that adapt the
dictionary to a set of signal realizations can be applied, such as
the method of optimal directions (MOD) [2] or K-SVD [3]. The
basic dictionary learning problem is formulated as

arggi)rg |V = DX||%2 st |allo <T Vi, (1)

where Y € RV*M g the data matrix, D € RV*% is an over-
complete dictionary, X € RE*M js the sparse coefficients
matrix, 7" is a sparsity threshold and z; denotes the i-th column
of the matrix X . However, these methods ignore dependencies
arising from the irregular data domain, and so the learned dic-
tionaries will neither possess an efficient structure nor explicitly
incorporate the underlying topology. As some signal character-
istics, such as smoothness, depend on the topology of the graph
on which the signals reside, this topology should be accounted
for in order to identify and exploit structure in the data. This is
especially true in cases of incomplete, insufficient or corrupted
data. It is therefore desired to capitalize on the prior knowledge
provided by the underlying graph structure when extending dic-
tionary learning methods to signals residing on weighted graphs.

Along this line of reasoning, analytic dictionaries for graph
signals can be proposed, generalizing transform-based dic-
tionaries from the Euclidean domain to the graph settings.
These include the graph Fourier transform [4], windowed graph
Fourier transform [5], diffusion wavelets [6], and spectral graph
wavelets [7], among others. Such dictionaries exhibit structure
derived from the graph and are less costly to apply, yet they are
less adapted to the data.

To bridge the gap between analytic and dictionary learning
approaches, recent work dealing with dictionary learning for
graph signals imposes structure on the trained dictionary. The
enforced structure is derived from the graph topology while its
parameters are learned from the data. Zhang et al. [8] suggest
that the dictionary should be a collection of shift-invariant filters
or sub-dictionaries. Namely, each structured sub-dictionary has
the form D, = yA,x” where Y is the eigenbasis of the graph
Laplacian £ and A; = 0 are some diagonal matrices. Thanou
et al. [9], [10] further restrict the dictionary to a polynomial
structure, Dy = Zf:o as - £F, with additional constraints im-
posed in order to control the frequency behavior of the kernels.

The graph considered thus far captures the internal structure
of each signal y € R”, and so describes the relation between the
rows of the data matrix Y. In this context, another graph structure
can be considered, describing the relations between columns
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of Y. To limit terminology confusion, we shall henceforth refer
to this graph as the data manifold and denote its Laplacian
matrix by L.. This manifold may also possess a low-dimensional
intrinsic structure that should be taken into account.

Various manifold learning methods have been proposed to
explore this structure (e.g. [11]-[13]), their common assump-
tion being that if two data points are close in the intrinsic data
manifold, then their representations in any other domain are
close as well. In recent years, the data manifold has become
prevalent in image processing for describing pairwise relation-
ships between image pixels or patches (see e.g. [14]-[20]). The
manifold Laplacian L. is then used as a regularizer, promot-
ing similar pixels to remain similar in the sparse embedded
domain.

Note that smoothness of a graph signal f can be measured in
terms of a quadratic form of the graph Laplacian

FLf =3 S Wyl - G @

i,J

which is merely a sum of squared differences between the signal
entries, weighted by the corresponding graph weights. Using
this notion, the manifold regularized sparse coding, as used for
example by [16], [21], reads:

min [[Y — DX|% + BTr(XL.XT) st |laillo < T Vi. (3)

The added regularization limits the degree of freedom in the
sparse coding task and favors solutions preserving the manifold
geometry. A similar approach was taken by [19], [22] by apply-
ing the Laplacian regularization on the reconstructed data DX
rather than on the sparse representation X .

Nonetheless, requiring that the obtained sparse representa-
tions X vary smoothly along the geodesics of the data mani-
fold, Equation (3) promotes inter-signal smoothness. When the
signals themselves reside on a graph or network, we propose to
require intra-signal smoothness in a similar manner.

In this paper, we therefore account for the graph structure
by an additional Laplacian regularization term applied to the
dictionary D:

min ||y — DX|% + oTr(DTLD) + BTr(X L. XT)
st lwillo <T Vi, 4)

where L € RY*V s the graph Laplacian. The two regular-
ization terms have similar forms, but serve totally different
purposes. Requiring that the dictionary atoms vary smoothly
along the graph geodesics implies smoothness of any signal
represented over this dictionary. The additional smoothness con-
straint serves the purpose of reducing the degrees of freedom
given to the learning algorithm, as does the explicit dictionary
structure proposed by [8] and [10], yet it is simpler and less
restrictive.

Furthermore, our proposed scheme suggests the additional
ability of learning the graph topology, encapsulated by the ma-
trix L, within the dictionary learning process. This is important
in cases where this structure is not given, yet known to exist.

To summarize, motivated by the above discussion, in this
paper we propose a dual regularized dictionary learning problem
that incorporates the graph topology via a quadratic smoothness
constraint imposed on the dictionary atoms, in addition to a man-
ifold smoothness regularization applied to the sparse codes. The
latter of these regularizations alters the sparse coding problem
and thus calls for the development of a new pursuit technique,
as described in detail in Section V. Furthermore, we propose to
learn the graph Laplacian L within the dictionary learning pro-
cess, adapting it to promote the desired smoothness. All these
joint forces implicitly enhance the learned dictionary.

A potential application for the proposed approach is graph
signal recovery from noisy or incomplete measurements. Con-
sider for example a temperature sensor network. In this case,
the rows and columns of the data matrix Y correspond to
the measurements location and time, respectively. Since the
temperature is expected to change gradually in both time and
space, the proposed graph smoothness constraints seem very
natural in both dimensions, and so incorporating the temporal
and spatial structure of the data in our scheme may improve
the recovery performance in cases of malfunctioning sensors.
Indeed, we shall come back to this and other data sources in
Section VI, demonstrating the effectiveness of the proposed
learning scheme in the context of recovery from noisy and miss-
ing measurements.

The rest of the paper is organized as follows: Section II de-
lineates the background and recalls some basic definitions on
graphs. Section III presents our basic regularized dictionary
learning approach, and Section IV suggests an extension that
adapts the graph Laplacian along the learning process. The
complete scheme that regularizes the sparse codes as well as
the dictionary atoms is then described in Section V. Experimen-
tal results are presented and discussed in Section VI, covering
synthetic and true-data applications. Finally, we conclude in
Section VII.

II. PRELIMINARIES

A weighted and undirected graph G = (V, E, W) consists of
afinite set V of N vertices (or nodes), a finiteset & C V' x V of
weighted edges, and a weighted adjacency matrix W. The entry
W;; represents the weight of the edge (v;,v;) € E, reflecting
the similarity between the nodes v; and v;. In general, W;; is
non-negative, and W;; = 0 if v;, v; are not directly connected
in the graph. Additionally, for undirected weighted graphs,
Wi; = Wj;. The graph degree matrix A is the diagonal matrix
having A;; = Zj Wij. Ay is the degree of the node v;, measur-
ing the sum of weights in the direct neighborhood of that node.
The combinatorial graph Laplacian matrix L is then defined to be
L = A — W. A normalized version of the Laplacian can also be
definedinthe form £ = A~V2LA™Y2 = T — A-12WA-Y/2,
While we note that other normalized versions of the Laplacian
are sometime used, we focus on this symmetric form for its
desired properties.

Given a topological graph, we refer to graph signals as func-
tions f : V — R assigning a real value to each graph node. Any
graph signal is therefore a vector in RY .
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When the weight matrix W is not naturally defined by an ap-
plication, a common construction is via a thresholded Gaussian
kernel. Put explicitly,

—d*(i,j . .
W,;-—{exP( 2,,(2”) if d(i,j) < K 6

0 otherwise,

for some parameters o and x. The distance function d(, j)
may represent a physical distance between nodes v; and v;, or
the Euclidean distance between two feature vectors describing
these nodes (e.g. sensor locations). Alternatively, d(7,j) may
be data-dependent and measure the distance between the data
signals evaluated at the nodes v; and v;. This is the case in the
non-local means (NLM) filter [23], for example. A combination
of external and internal features is also possible, as suggested
for the bilinear filter [24]. Besides the Gaussian kernel, another
common construction method is to connect each node with its
k-nearest neighbors based on either the physical or the fea-
ture space distance [1]. We further touch upon this point in
Section VI.

III. GRAPH REGULARIZED DICTIONARY LEARNING

We start by incorporating the internal signal structure into
the training process, leading to the following graph regularized
dictionary learning problem:

arg min [|Y" — DX|% + oTr(D" LD)

S.t. ||$LH0 <T Vi, (6)

where Y € RV*M g the data matrix, D € RV*% is an over-
complete dictionary, X € RX*M s the sparse codes matrix,
L € RY*N is the graph Laplacian, 7 is a sparsity threshold and
x; denotes the i-th column of X.

The suggested smoothness regularization, based on the Lapla-
cian quadratic form (LQF), is less restrictive than forcing a
parametric structure on the atoms. As opposed to previously pro-
posed Laplacian regularizations (e.g. [22]), smoothness along
the graph geodesics is here imposed directly on the dictionary
atoms rather than on the reconstructed signals. Clearly, smooth-
ness of the atoms over the graph topology implies smoothness of
any signal represented over the dictionary, bearing in mind that
such signals are sparse combinations of these atoms. Yet a ma-
jor benefit of this approach is that it significantly simplifies the
learning process by relieving the additional coupling between
D and X beyond their tie through the fidelity term. Moreover,
an explicit constraint posed on the dictionary prevents scenarios
where the sparse coefficients compensate for non-smoothness
of the atoms, and therefore yields a more robust dictionary that
can be better generalized for representing other sets of signals.

To solve Equation (6), we propose a dictionary learning algo-
rithm in the spirit of K-SVD [3]. That is, the algorithm alternates
between estimating the sparse coefficients X and updating the
dictionary D. Since optimization over X is not impacted by
the added regularization, standard sparse coding can be used.
Moreover, due to the nature of the proposed regularization, each
atom could still be updated independently of the rest, since

Tr(DTLD) =YX | d” Ld;. Overall, by utilizing the positive
semi-definite nature of the graph Laplacian, a computationally
efficient learning algorithm is obtained.

Adopting the K-SVD algorithm formulation [3], Equation (6)
is solved by sequential update of each atom independently.
Let v; denote the j-th column of X T so that vlT is the j-th
row of X. For the j-th atom update, the error term could thus
be reformulated as follows:

IY = DX = Y = S do! —dol |3
i#i @)
= ||E; — dju] |3

To preserve the representation sparsity, the update support is
restricted to samples using the j-th atom by the restriction matrix
P;, that selects the subset of columns corresponding to signals
using the j-th atom:

|E; P; — djv] Pj||7 = | EfY — d;(v] )*||, ®)

with EJR, (va)R denoting the restricted versions of E;, va re-
spectively. The regularized update problem for the j-th atom is
hence
; R T\R |2 T

dﬁng/} ||E] — dj(’uj ) HF + ad; Ld;, ©)]
and could be solved using a block-coordinate descent (BCD)
approach, by alternating between updates of d; and (U]T)R (as-
suming the other variables are kept fixed). Minimizing (9) leads

to closed-form update rules:

T T
R r\T dj PJ Ej d.i
vl = (B! = : (10)
= ) R T TR
-1
dj = (v} |31 + aL) ~ E;Pof. (11)

We observe that the graph Laplacian L is real and symmetric,
hence by eigenvalue decomposition L = QAQ,

(P13 +aL) ' = Q ([of |31 +an) ' Q"

Therefore the computational complexity is limited to a single de-
composition of L followed by repeating inversions of diagonal
matrices. The additional cost of O(N?) is negligible compared
with the complexity of the pursuit which is O(N?). The com-
putational cost of our approach is therefore similar to that of
K-SVD, which is anyhow bounded by the pursuit complexity.
Since the decomposition of L also costs O(N?) computations
and is similarly required for the polynomial dictionary learning,
the complexity of both algorithms is comparable.
The complete algorithm is summarized in Algorithm 1.

(12)

IV. LAPLACIAN LEARNING

The graph Laplacian L has an important role in describing
the structure of a graph, and its construction thus has a signif-
icant impact on the success of the dictionary learning process.
Nevertheless, the choice of L was thus far rather arbitrary. Even
when the choice of L is natural to the application at hand, it
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Algorithm 1: Graph Regularized Dictionary Learning.

Input: initial dictionary D) € RNV *K
Iterate: for k = 1,2, ...
e Sparse Coding: solve (e.g. using OMP)

Xy = argmin [[Y — D1y X7

S.t. H.”L'Z”() <T Vi

e Dictionary Update: for j = 1,2,..., K
— Identify the samples using the atom d;,

Q={i|1<i<M, Xylji] #0}

— Define the restriction operator P; corresponding to §);
— Compute the residual matrix

E]' =Y — Z dIUIT
i#]j
where v/ is the i-th row of Xj).
— Apply alternately:
r _ PIETd
VT T4 R
v d; = ([oF[31 + aL)~ E, Pk
Output: D,

may not accurately reflect the true network connectivity and the
intrinsic relationships between data entities. Basing the smooth-
ness constraint on a non-representative L will evidently lead to
sub-optimal performance of our proposed algorithm. Moreover,
it may be the case that the underlying topology is altogether
unknown.

To overcome this barrier, we propose an extended framework
that adapts the arbitrarily initialized Laplacian to the data in a
way that promotes atom smoothness. The suggested optimiza-
tion of L is integrated in the dictionary learning process.

The extended formulation now aims at solving the following
joint optimization problem:

arg min Y — DX} +oTr(D" LD) + u|| L[}

Lij =Ly <0 (i # j) (1)
L1=0
Tr(L) = N,

where NV is the number of graph nodes, and 0 and 1 denote the
constant vectors of all-zeros and all-ones, respectively. We shall
refer to this proposed method as graphDL. The first two added
constraints guarantee that the resulting L is a valid Laplacian
matrix, and the third is added as normalization to avoid the trivial
solution. Since the trace constraint fixes the ¢; norm of L, the
Frobenius norm penalty is added to control the distribution of
the off-diagonal entries and impact the resulting sparsity of L.
We note that Laplacian learning was also proposed in [25],
[26] under a different setting of promoting smoothness of the
given signals. That is, smoothness over L is imposed on the data

matrix, while within the sparsity context of our approach, we
employ it directly on the dictionary atoms.

While Equation (13) is non-convex with respect to (L, D, X)
jointly, it is convex with respect to D and L separately, assuming
the other variables are fixed. Solving by alternation, optimiza-
tion over D, X (for a fixed L) reduces to Equation (6), and
can be solved using the algorithm proposed in Section III. Con-
sequently, optimization over L (assuming D and X are fixed)
leads to the following problem:

min oTr(DTLD) + p|| L||%
L1=0
Tr(L) = N.

(14)

By vectorizing L, Equation (14) can be cast as a quadratic
optimization problem with linear constraints, which could be
solved using existing convex optimization tools. As the com-
putational complexity scales quadratically with the number of
nodes /N, for very large graphs an approximate solution may be
sought based on splitting methods or using iterative approaches.

V. DATA MANIFOLD REGULARIZATION

Having introduced the graph regularization in Equation (6),
we next construct a combined problem restricting both the rows
and columns of the recovered data matrix. The network topol-
ogy, representing the internal structure of the signals, is modeled
by a graph Laplacian L € RV >V that is applied to the dictio-
nary D. The data manifold, representing the relations between
different signals, is modeled by another Laplacian L. € RM*M
that is applied to the sparse code matrix X. Enforcing a similar
LQF smoothness constraint in both dimensions, the following
unified problem is obtained:

argmin |Y — DX|% + oTr(D" LD)
DX (15)
+BTr(XL.XT) st |alo <T Vi
To solve this problem, some modification of Algorithm 1 is
required. First, the sparse coding stage will now diverge from
the standard form due to the regularization applied on the sparse
codes. Second, the update rule for the sparse coefficients related
to the j-th atom should be altered to reflect the added restriction.
For the latter, Equation (9) now reads

i 2
guin (1B = s (o] + adf L

+ B ) LI,

! (16)

where L = P! L. P; is the M; x M, restricted version of L,
consisting solely of the rows and columns corresponding to the
samples using the j-th atom. We emphasize that L7 is simply
a subset selection out of the full Laplacian L., and does not
require recomputing the weights.
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Optimizing over d;, UJR alternately, the modified closed-form
update rule for v/ is

-1
vf = (|l |51+ BLY) " Pl E] d (17)

while the update rule for d; remains as given by Equation (11).

Computation-wise, we note that while different for each atom,
L% does not occupy the entire dimension of L. but rather the
restricted support considering only the samples using that atom.
Assuming that each atom is only used by a small subset of the
signals, Lf? is of limited dimensions, and the matrix inversion in
Equation (17) can be carried out for each atom (at each iteration)
in reasonable time.

Having modified the dictionary update stage, we should still
tackle the graph regularized sparse coding task:

argmin ||Y — DX||% + 8Tr(XL.XT)
X (18)
S.t. ||.137||0 <T Vi.

This problem is no longer separable, demanding joint sparse
coding of the dataset signals. Previous work [16] proposed to
solve Equation (18) by replacing the ¢y norm with ¢; and using
a coordinate descent approach and subgradient methods.

We propose a different solution based on the Alternating
Direction Method of Multipliers (ADMM) [27], which enables
simultaneous update of all columns of X. In this approach, the
non-convex sparsity constraint is separated from the rest and
Equation (18) is reformulated as

argmin [|Y" — DX|% + BTr(XL.XT)

st. X =12, (19)
lzillo <T Vi
The augmented Lagrangian is then given by
£,(X.2.0) = f(X) +9(Z) +pllX — Z+ U} 0)
where  f(X)=||Y — DX|% + BTr(XL.XT), g(2)=

Z(||zillo < T Vi) for an indicator function Z(), and U is the
scaled dual form variable.

The ADMM iterative solution consists of the following steps,
with £ denoting the iteration number:

XU = argmin (£(X) + pl|X — 25+ UD3)

200 — argmin (9(2) + p X4V — 7+ UM|3) @D
Ukt = gt 4 x(k+1) _ z(k+1),

For the sub-problem of updating X, omitting the sparsity
requirement has led to a quadratic objective. By simple deriva-
tion, this problem reduces to solving the following Sylvester
equation [28]:

(D"D +pI) X + BXL. =D"Y +p(Z - U).  (22)

It is well known (e.g. [29], [30]) that this equation has a
unique solution X since the eigenvalues of (D? D + pI) and

Algorithm 2: Graph Regularized Sparse Coding.

Initialize:

X = argmin |Y = DX |3 st ||zl <T Vi

70) — x(0)
U =0

Iterate: for k = 1,2, ...
e Update X %) as the solution of

(D'D + p)X + XL, =D'Y +p <Z<k71> _U(k—l))

e Update Z(¥) = Pr (X*) 4 Ulk-1)
e Update U*) = (k=1 4 x (k) _ Z(k)
LS update: forj =1,.... M
o Q; ={i| ZWi,j] #0}
« 2y, j] = Djy y;
where DQJ is the restriction of D to the subset €2;.
Output: The desired result is Z(%).

(—(L,) are distinct. A numerical solution can be efficiently ob-
tained using the Bartels-Stewart algorithm [31], [32], based on a
Schur decomposition and backward substitution. Alternatively,
for large dimensions, an iterative gradient descent approach may
be applied.

As for the sub-problem of updating Z, this turns out to be
a shrinkage problem, requiring merely a sparse projection of
X + U. To obtain it, hard thresholding is applied to X + U
such that only the 7" largest entries of each column are kept. We
denote this projection operator by Pr.

Upon convergence, to further improve the result while pre-
serving the sparsity pattern, an additional least squares (LS)
step is performed to update the coefficient values on the de-
termined support. Let €2; denote the set of 1" atoms used for
representing the j-th signal, Q; = {i | Z; ; # 0}. Minimization
of [|[Y — DZ||% over the fixed supports §2; is a convex problem,
leading to the final update Zg, ; = Dgz_y]- Vi=1,..,M.

As the problem in Equation (19) is Jnon-convex, ADMM is
not guaranteed to converge, and even if it does, it need not be
to a global optimum. This approach is thus relatively sensi-
tive to the choice of parameters and initialization of X, Z, U.
Nonetheless, as a heuristic, we initialize with the standard sparse
coding

x© = arg min |V = DX|% st |laillo <T Vi, (23)

which is empirically found to perform well.

The graph regularized sparse coding algorithm is summarized
in Algorithm 2.

To show the advantage of the proposed formulation, we per-
formed simulations on a synthetic example and compared both
regularized sparse coding methods (our ADMM based pursuit
and the graph regularized sparse coding proposed in [16]) in
representing noisy graph signals over a known dictionary. The
signals were generated by combining 4 atoms of the dictio-
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Representation Error

—6— ADMM
—A— graphSC |
—¥— graphSC (debiased)

RMSE

0.01 . . . . . . . .
2 4 6 8 10 12 14 16 18 20
Number of atoms used in the representation
Fig. 1. Evaluation results for two graph regularized pursuit methods: the

proposed ADMM solution and the graph regularized sparse coding (graphSC)
of [16], in its original and debiased versions.

nary and adding Gaussian noise with Signal to Noise Ratio
(SNR) of 10. These signals were then coded over the known
dictionary for different levels of sparsity using both pursuit
methods, and the representation error was evaluated in terms
of Root Mean Squared Error (RMSE) divided by the noise
power. The parameter values used for this simulation are § =
10, p = 1. Since graphSC [16] uses an ¢; sparsity measure, its
regularization coefficient was chosen such that both methods
yield the same sparsity level in terms of ¢,. Additionally, to give
graphSC the benefit of debiasing, we kept the estimated support
and re-evaluated the coefficient values using LS.

The results presented in Fig. 1 clearly demonstrate that the
ADMM approach yields lower representation errors for all the
evaluated sparsity levels. In terms of runtime, the two methods
are comparable when a very small number of atoms is used, and
the ADMM approach is otherwise faster.

The dual graph regularized dictionary learning algorithm for
solving Equation (15) is assembled by replacing the sparse cod-
ing stage in Algorithm 1 with the procedure of Algorithm 2,
and replacing the update rule from Equation (10) in the dictio-
nary update stage with Equation (17). The resulting algorithm
is described in Algorithm 3.

Finally, the proposed extensions may be merged together by
adding the Laplacian learning, which results in the following
optimization problem:

arg min || — DX|% + oTr(DT LD)

+BTr(XLX") + pl| L] %
st aillo <T Vi
Lij =Lj; <0 (i #j)
L1=0

Tr(L) = N, (24)

Algorithm 3: Dual Graph Regularized Dictionary Learning.

Input: initial dictionary D) € RV *K
Iterate: for k = 1,2, ...
e Sparse Coding: run Algorithm 2 to solve

Xy =argmin |Y — D) X|[F + 517 (XL XT)

S.t. HLL‘ZH(] <T Vi

e Dictionary Update: for j = 1,2,..., K
— Identify the samples using the atom d;,

Q={i|1<i<M, Xylji] #0}

— Define the restriction operator P; corresponding to §2;
— Compute the residual matrix

i
where v/ is the i-th row of X ).
— Apply alternately:
« ol = (|ld; |31 + BLE) P BT d,
wd; = ([oF 31 + aL) " E; Pyl
Output: D), X1,

which we refer to as graph?DL. This problem could then be
solved using a fused procedure, alternating between optimiza-
tion over D, X using Algorithm 3, and optimization over L by
solving Equation (14).

As stated in the introduction, this combined learning frame-
work offers a symmetric two-dimensional analysis of the data
while jointly optimizing the graph Laplacian and the represen-
tation dictionary.

Finally, we note that we could theoretically learn L. similarly
to learning L, which would result in a fully symmetric problem
formulation. This was not attempted in the scope of this work
mainly for focusing on the new proposed regularization that
uses L, and due to the larger typical dimensions of L.

VI. EXPERIMENTS AND APPLICATIONS

In this section, we demonstrate the effectiveness of our
method on synthetic examples and on real network data and
show its potential use in data analysis applications.

The main problem we discuss is dealing with faulty sensors,
producing missing or corrupted measurements. Specifically, we
evaluate the ability of the proposed approach to recover the true
underlying signals from noisy or incomplete samples. This ap-
plication is demonstrated on two sensor networks: traffic loads
and temperatures. Consequently, we revisit the problem of im-
age denoising and demonstrate the capability of our method to
improve denoising performance while successfully inferring the
underlying patch structure.

Throughout this section, the hyperparameters used for the var-
ious compared algorithms are chosen empirically, by exhaustive
search over different sets of values and selecting the set yielding
the lowest representation error of the training data.
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Fig. 2.

Synthetic experiment ground-truth graph.

A. A Synthetic Experiment

We first carry out experiments on a synthetic setup, where the
generating dictionary and underlying graph are known, such that
their recovery by our algorithm can be quantitatively assessed.
Note that due to the complexity of the model and the inherent
coupling between D and L, these matrices can not be drawn
independently and rather require a more careful construction.

We generated a random graph consisting of N = 100 nodes
that are randomly distributed in the square [0, /5] x [0,+/5].
The edge weights between each pair of nodes were determined
based on the Euclidean distances between them and using the
Gaussian Radial Basis Function (RBF) W;; = exp (%)
with 0 = 0.5. Consequently, edges with weights smaller than
0.5 were removed, keeping about 17% of the overall edges. An
illustration of the resulting graph is provided in Fig. 2.

The graph Laplacian L = A — W was then computed (for
the diagonal degree matrix A), and multiplied by a constant
normalization factor such that for the resulting L, Tr(L) = N.
This form of normalization is only needed to enable fair com-
parison with the graph learned in our method, which is restricted
to have a predefined trace.

To construct the dictionary D € RY*X (K = 2N) with
smooth atoms, an initial random dictionary Dy was drawn and
then D was obtained as the solution of

arg min|[D — Dyl|% + ATr(DTLD), (25)
or put explicitly, D = (I + L)™' Dy.

We note that the choice of A is important. The larger it is,
the smoother the generated atoms, yet a strong enforcement
of structure dramatically increases the mutual coherence of D,
which may result in convergence problems for the orthogonal
matching pursuit (OMP) incorporated in our method. In our
experiment, we used A = 5, which empirically resulted in a
reasonable coherence.

The data matrix Y € RY*49N was generated by drawing a
random sparse coefficient matrix X with a predefined sparsity
of T' = 4 atoms per signal, and setting Y = DX. Each signal
was then normalized to have unit norm, and contaminated by

TABLE I
DICTIONARY COMPARISON IN TERMS OF ATOM RECOVERY PERCENTAGE,
REPRESENTATION ERROR (WITH RESPECT TO THE GIVEN NOISY SIGNALS) AND
DENOISING ERROR (WITH RESPECT TO THE GROUND TRUTH CLEAN SIGNALS)

graphDL

Pol  graphSC K-SVD  graphDL  (learned L)  graph?DL
atom recovery % 0 84 82.5 83.5 86.5 87
recovered atoms 0 168 165 167 173 174
(out of 200)
representation 2.317 1.189 1.141 1.134 1.12 1.098
error
denoising factor ~ 2.178 0.769 0.706 0.691 0.664 0.625

Errors are presented in units of %

an additive Gaussian noise with Signal to Noise Ratio (SNR)
of 10.

Given the noisy data Y, the data manifold graph L. was
constructed using an RBF kernel for the Euclidean distance
function d(4, j) = |lyi — y;||2, where y; is the i-th column of Y.

An initial graph Laplacian L; was constructed using the same
approach as building L., this time based on the Euclidean dis-
tances between rows of Y and with ¢ = 10. The same thresh-
olding and normalization were applied as in the ground truth
graph.

To evaluate the influence of the individual components, we
provide results for three versions of our algorithm: graphDL
which relies on the initial Laplacian L; and does not update
it, graphDL which learns L as well, and graph?DL, which also
exploits the relation between the example signals via L.. The
dictionaries learned by our algorithm (for empirically chosen
parameters « = 0.1, 8 = 0.6, u = 0.08,T" = 4) were compared
against the K-SVD [3], the manifold regularized dictionary
(graphSC) [16] and the polynomial dictionary [10]. Each of
the dictionaries was evaluated with respect to the ground truth
generating dictionary by measuring the amount of recovered
atoms. For that matter, an atom d; of the ground truth dictionary
is considered to be recovered if for any atom ci, in the learned
dictionary, |(d;, d;)| > 0.99.

Additionally, we assess the ability of the dictionaries to
sparsely represent a set of test signals with a known sparsity
of T' = 4 atoms. Two normalized measures of quality are pre-
sented: (i) The representation error, i.e. the residual energy for
representing the test set using 4 atoms, divided by the additive
noise power; and (ii) The denoising factor, which shows the rel-
ative noise remaining in the test signals after denoising (a value
below 1 implies effective denoising).

The dictionary comparison results are presented in Table I,
indicating that graph? DL best recovers the generating dictionary
and also yields the lowest representation error while achieving
noise reduction by a factor of 1.6. Furthermore, a gradual im-
provement is demonstrated between the different versions of
our algorithm, indicating that each component has a significant
contribution to the overall outcome.

Next we compare the graph Laplacian learned by our
graph?DL algorithm (denoted Lp), with the one learned di-
rectly from the data signals [26] (denoted Ly ) and with the
initial graph L;.
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Characteristic graph signals demonstrating the daily traffic level (minutes of bottlenecks) across Alameda County, California, on three different days.

The graph nodes are the detector stations and the connectivity is defined based on the Euclidean distance between the GPS coordinates of the stations. The size

and color of each ball indicate the value of the graph signal at that node.

TABLE I
GRAPH LEARNING PERFORMANCE

LD Ly L,
No. edges (%) 870 (17.58) 886 (17.90) 9874 (49.87)
F-measure 0.861 0.858 0.307
IL—=Lar|r 2.13 2.25 3.22

The number of edges in the learned graphs should be compared with the
ground truth graph having 855 (17.27%) edges.

For a quantitative evaluation, we compare the sparsity of the
learned graphs and assess the recovery of the edges positions
using the F-measure achieved by each algorithm with respect to
the ground truth graph. We use the relation:

2 - Precision - Recall

F-measure = — (26)
Precision + Recall
where
TP TP
Precision = ———— ; Recall= ———— 27
recision TP+ FP eca TP FN 27)

such that TP, FP, FN represent the true-positive, false-positive
and false-negative percentages.

To further evaluate the estimated edge weights, we compare
the Frobenius norm ||L — L7 ||# for each learned L with re-
spect to the ground truth Laplacian L 7. The results are sum-
marized in Table II, indicating that our algorithm successfully
recovers 86% of the edges and is thus comparable to and even
slightly outperforms the other methods in terms of the evaluation
criteria.

Therefore, we conclude that our joint learning approach is
able to capture the underlying structure of the data in terms of
both the generating dictionary and the graph Laplacian.

B. Traffic Network Data

The proposed approach was further evaluated on the Caltrans
Performance Measurement System (PeMS) database that pro-
vides traffic information throughout all major metropolitan areas
of California [33]. The dataset consists of 2892 signals, rep-
resenting the daily average bottlenecks measured at N = 578
predefined locations in Alameda County’s transportation net-
work, over the time period spanned from 2007 to 2014.

In particular, the nodes of the graph consist of detector sta-
tions where bottlenecks were identified over the period under
consideration. The initial graph Laplacian L is designed by
connecting stations when the distance between them is smaller
than a threshold of 6 = 0.08, corresponding to approximately
13 kilometers. The distance is set to be the Euclidean distance
of the GPS coordinates of the stations and the edge weights are
set to be inversely proportional to the distance.

A bottleneck could be any location where there is a persistent
drop in speed, such as merges, large on-ramps, and incidents.
The signal on the graph is the average duration in minutes that
a bottleneck was active for each specific day. Some exemplary
signals are depicted in Fig. 3.

The data manifold graph L. is constructed using an RBF ker-
nel (5) for the Euclidean distance function d(4, j) = ||y; — y;l|2,
where y;,y; are the signals measured at the i-th and j-th days
respectively.

The proposed approach is compared with the paramet-
ric polynomial dictionary [10] and with the non-regularized
K-SVD [3].

A random subset of 1500 signals constitutes the training
set, and the rest are used for testing. The added regular-
ization parameters in Equation (24) were empirically chosen
to be a=0.2,3=1,u4=0.16. For consistency with [10],
the learned polynomial dictionary consists of S =2 sub-
dictionaries, each of which is a tenth order polynomial of the
normalized graph Laplacian. For the training phase, a sparsity
threshold of 7" = 6 was used across all methods, and all signals
were normalized with respect to the one having the maximal
energy.

We start by evaluating the fit of the learned dictionaries by
sparsely representing the testing set signals over each of these
dictionaries for different sparsity levels (number of used atoms).
The obtained representation errors are presented in Fig. 5(a). It
can be observed that the proposed graph®DL yields lower errors
compared with the other evaluated methods.

Henceforth we challenge the learned models and assume that
the observed measurements Y are the outcome of some corrup-
tion of the underlying signals Z, manifested as additive noise
and missing samples. Put formally,
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learned by K-SVD [3], and the third - atoms learned by graphDL. The size and color of each ball indicates the value of the atom at that graph node.

where the mask matrices ©; indicate the missing samples (which
may differ between signal observations) and 7; ~ N(0,02) is
an additive Gaussian noise.

For assessing the potential benefit of the new dictionary for
the common signal denoising problem, Gaussian noise of differ-
ent levels 0, was added to the test signals (assuming M; = I V1)
and recovery using the previously learned dictionaries was com-
pared in terms of the Root Mean Squared Error (RMSE). Since
the noise is random and does not adhere to the graph topol-
ogy, the regularized dictionary is more likely to separate it
from the signal. Indeed, the proposed dictionary outperforms
the other methods for all the different noise levels, as illustrated
in Fig. 5(b).

Next, we evaluate the performance for the signal inpainting
(data completion) problem. In practice, missing samples may
arise either from a budget restricted data acquisition, or from
faulty sensors. For this scenario, we set o,, = 0 and draw M; to
randomly subsample the test signals, preserving various prede-
fined percentages of samples. The results presented in Fig. 5(c)
are similar to those obtained in the reconstruction and denois-
ing experiments, and it can be observed that the regularized
dictionary yields lower errors even in the extreme case where
only 10% of the samples remain.

Finally, we compare the atoms of the different learned dictio-
naries. Fig. 4 visualizes the 3 atoms in each of those dictionaries
that were most commonly included by OMP in sparse decom-
position of the testing signals.

It can be observed that the atoms learned by our approach
are smoother over the graph compared with those learned by
K-SVD [3], though not as smooth or localized as those learned
for the polynomial dictionary [10].

In conclusion, our results demonstrate that the graph regu-
larized dictionary outperforms the other dictionaries in terms
of both representation error and signal recovery from noisy
or missing samples. Integrating the Laplacian optimization, an
additional improvement over the basic graphDL method can
be observed in all simulated scenarios. Intuitively, the learned
Laplacian in this example may reflect the road lengths connect-
ing each pair of sensors rather than the plain Euclidean distances
assumed in the initial graph construction, hence it better coin-
cides with the smoothness of traffic load propagation. It is also
evident that the dual regularized graph?DL, incorporating both
smoothness constraints in the learning process, further improves
the performance of the proposed method and results in an over-
all significant enhancement compared with the two reference
methods.
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Fig. 5. Comparison of the learned dictionaries in terms of RMSE for three

different applications tested on the traffic dataset: (a) representation error for
different sparsity levels, (b) denoising error for different noise levels o,, (with
respect to the data STD o), (c) data completion error for different percentages
of remaining samples.

C. Temperature Data

We consider a dataset of daily temperature measurements
collected during the years 2011 to 2013 by N = 150 weather
stations across the mainland United States [34]. Each graph sig-
nal represents the average temperatures (in degrees Fahrenheit)
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Fig. 6. Comparison of the learned dictionaries in terms of RMSE for three
different applications tested on the temperature dataset: (a) representation error
for different sparsity levels, (b) denoising error for different noise levels o, (with
respect to the data STD o), (c) data completion error for different percentages
of remaining samples.

measured across the sensor network on a single day. The dataset
contains M = 1096 graph signals, constituting three full years
of measurements.

We construct a graph whose nodes represent the sensors,
with the edge weights set to be inversely proportional to the ge-
ographic distances between sensors. The graph is then pruned
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Characteristic graph signals demonstrating the daily mean temperature (in degrees Fahrenheit) across the United States for 3 different days. The graph

nodes are the detector stations and the connectivity is defined based on the Euclidean distance between the GPS coordinates of the stations. The color of each ball

indicates the value of the graph signal at that node.

Noisy Image (PSNR=20.18[dB])
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Original Image

Fig. 8.
denoising with optimized L.

such that stations are connected when the distance between
them is smaller than a threshold of # = 5, corresponding to ap-
proximately 450 kilometers. The underlying assumption is that
nearby sensors will have highly correlated temperatures. The
temperature graph with some typical graph signals are illus-
trated in Fig. 7.

The manifold graph L. is constructed in a similar manner to
the procedure described for the previous dataset.

The proposed approach was again compared with K-SVD [3]
for reconstruction error, noise removal and data completion ap-
plications, following the same procedure adopted in the pre-
vious subsection. Due to the previous results, the polynomial
dictionary was omitted from this comparison. A random sub-
set of 730 signals constitutes the training set, and the rest are

K-SVD (PSNR=28.35[dB]) graphDL (PSNR=28.50[dB])

(©) (d)

K-SVD (PSNR=30.56[dB]) graphDL (PSNR=30.71[dB])

(® ()

Image denoising results for the images barbara and peppers: (a), (e) Original image, (b), (f) Noisy image, (c), (g) K-SVD denoising, (d), (h) graphDL

used for testing. For the training phase, a sparsity threshold of
T = 2 was used across all methods, and all signals were nor-
malized with respect to the one having the maximal energy.
As in the traffic dataset, the chosen hyperparameters were
a=0.2,6=1u=0.16.

In accordance with the previous experiments, the results pre-
sented in Fig. 6 demonstrate that the dual regularized dictionary
yields lower errors for all the simulated scenarios.

D. Glimpse at Image Processing

We conclude the section by revisiting the task of image de-
noising. However, the objective of this experiment is not achiev-
ing optimal denoising, but rather being able to better identify the
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learned from a limited sample of noisy patches.

inner structure of the data and exploit it to improve denoising
performance in challenging conditions.

A 512 x 512 image was contaminated by random Gaussian
noise with standard deviation o = 25 and divided into over-
lapping 8 x 8 patches that constitute the columns of the data
matrix. An evaluation of the proposed approach on this data
(with hyperparameters o = p = 100, 3 = 0) shows that for a
limited training set of 1000 patches, the added structure con-
straint slightly improves the performance of K-SVD denoising
[35]. The results obtained for two different images are presented
in Fig. 8, demonstrating PSNR improvement of 0.15[dB]. Ob-
viously, the more limited the training set, the more significant
the improvement of graphDL over K-SVD denoising, however
the overall final outcome is of lower quality.

More importantly, the learned Laplacian, having been initial-
ized with L = I, captures the internal patch structure rather well.
Fig. 9 displays the learned graphs for both synthetic and natu-
ral images. The adjacency matrix corresponding to the learned
graph Laplacian is presented in the form of a 8 x 8 patch, for
convenience.

These results indicate that our algorithm successfully recov-
ers a recurring pattern from its noisy observations and learns
the pattern orientation instead of the local neighborhood cor-
relations. In a natural image containing a mixture of textures,
the learned graph is biased towards the included orientations.
Moreover, when the image does not include a dominant texture,
the learned graph structure is almost accurately the 8-nearest-
neighbor relation between pixels within the patch.

We emphasize that Fig. 9 does not display the learned dic-
tionary atoms but rather the estimated underlying graph whose

(® ()

Learned graphs for different images. The top row shows the original (clean) images, and the bottom row - the corresponding patch structure graphs

7 b‘m
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Fig. 10. Learned dictionaries for the image Barbara, using K-SVD (left) and
graphDL (right).

nodes are the 64 pixels within a patch. The dictionary itself is
quite similar to the one learned by K-SVD, as demonstrated for
example in Fig. 10.

VII. CONCLUSION

This work presented a dictionary learning algorithm for graph
signals that incorporates the underlying topological prior.

The first contribution is the introduction of a Laplacian based
regularization that is applied directly to the learned dictionary.
This constraint, combined with the common manifold regular-
ization that is applied to the sparse codes, leads to a symmetric
problem formulation. Additional novelty therefore lies in the
resulting unified framework considering the data matrix rows
to be of equal significance to its columns, and treating them
both in a similar manner by promoting smoothness using a



YANKELEVSKY AND ELAD: DUAL GRAPH REGULARIZED DICTIONARY LEARNING

Laplacian based regularization. In the network data used for our
simulations, these two axes/dimensions represent the spatial
and temporal domains. The dual graph regularized formulation
thus captures both spatial dependence among nodes through the
network topology, and the temporal evolution of the individual
processes occurring at each node through the manifold structure
of the training data.

Furthermore, we proposed an extended setting in which the
graph Laplacian is learned jointly with the dictionary, to over-
come errors resulting from inaccurate graph construction where
the underlying topology is not readily known. The Laplacian
learning problem bears similarity to other highly researched
problems, such as sparse inverse covariance estimation for Gaus-
sian graphical models and metric learning. The former may pro-
vide a probabilistic interpretation to the learned dictionary, as
a Gaussian Markov Random Field (GMRF) with respect to a
graph whose Laplacian is the inverse covariance matrix. We
plan to further study these relations in our future work.

The effectiveness of the proposed method was demonstrated
on synthetic data as well as on real network data, and compared
with the parametric polynomial dictionary [10] and with K-SVD
[3]. Our simulations indicate that while resulting in a relatively
simple and efficient algorithm, this approach successfully infers
the underlying topology, and is advantageous in the achieved
representation error over a collection of graph signals, and in
typical signal processing applications such as denoising and
inpainting.
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